Aurea Karina RamÃ-rez-Jiménez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515267/publications.pdf Version: 2024-02-01

Aurea Karina

#	Article	IF	CITATIONS
1	Functional and technological potential of dehydrated Phaseolus vulgaris L. flours. Food Chemistry, 2014, 161, 254-260.	8.2	65
2	Technological Applications of Natural Colorants in Food Systems: A Review. Foods, 2021, 10, 634.	4.3	62
3	Functional properties and sensory value of snack bars added with common bean flour as a source of bioactive compounds. LWT - Food Science and Technology, 2018, 89, 674-680.	5.2	54
4	Potential role of bioactive compounds of Phaseolus vulgaris L. on lipid-lowering mechanisms. Food Research International, 2015, 76, 92-104.	6.2	50
5	Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. Journal of Cereal Science, 2017, 77, 1-8.	3.7	38
6	Impact of cooking and nixtamalization on the bioaccessibility and antioxidant capacity of phenolic compounds from two sorghum varieties. Food Chemistry, 2020, 309, 125684.	8.2	31
7	Mango-bagasse functional-confectionery: vehicle for enhancing bioaccessibility and permeability of phenolic compounds. Food and Function, 2017, 8, 3906-3916.	4.6	24
8	Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chemistry, 2019, 276, 57-62.	8.2	24
9	Untargeted metabolomic evaluation of mango bagasse and mango bagasse based confection under in vitro simulated colonic fermentation. Journal of Functional Foods, 2019, 54, 271-280.	3.4	19
10	Emerging techniques assisting nixtamalization products and by-products processing: an overview. Critical Reviews in Food Science and Nutrition, 2021, 61, 3407-3420.	10.3	16
11	Extruded snacks from whole wheat supplemented with textured soy flour: Effect on instrumental and sensory textural characteristics. Journal of Texture Studies, 2017, 48, 249-257.	2.5	13
12	Agave By-Products: An Overview of Their Nutraceutical Value, Current Applications, and Processing Methods. Polysaccharides, 2021, 2, 720-743.	4.8	13
13	Influence of extrusion process on the release of phenolic compounds from mango (Mangifera indica) Tj ETQq1 1 antioxidant capacity. Food Research International, 2021, 148, 110591.	0.784314 6.2	rgBT /Overlo 12
14	Is Apo-CIII the new cardiovascular target? An analysis of its current clinical and dietetic therapies. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 295-308.	2.6	7
15	Eustress application trough-controlled elicitation strategies as an effective agrobiotechnology tool for capsaicinoids increase: a review. Phytochemistry Reviews, 0, , 1.	6.5	4
16	Gastrointestinal metabolism of monomeric and polymeric polyphenols from mango (Mangifera indica) Tj ETQqO	0 0 rgBT /0 8.2	Dvgrlock 10 T
17	Sensory and process optimization of a mango bagasse-based beverage with high fiber content and low glycemic index. Journal of Food Science and Technology, 2022, 59, 606-614.	2.8	2
	Daily Intake of a Phaseolus vulgaris L. Snack Bar Attenuates Hypertriglyceridemia and Improves Lipid		

 ¹⁸ Metabolism-Associated Plasma Proteins in Mexican Women: A Randomized Clinical Trial. Frontiers in
 3.7
 1

 Nutrition, 2022, 9, .
 1

#	Article	IF	CITATIONS
19	Bioactive Potential of a Traditional Hispanic Plant: Fermented and Non-fermented Agave Products. ACS Symposium Series, 0, , 159-174.	0.5	0