Fenghua Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515168/publications.pdf

Version: 2024-02-01

172 papers 18,769 citations

70 h-index 134 g-index

178 all docs

178 docs citations

178 times ranked

15981 citing authors

#	Article	IF	CITATIONS
1	Folate-mediated targeted PLK1 inhibition therapy for ovarian cancer: A comparative study of molecular inhibitors and siRNA therapeutics. Acta Biomaterialia, 2022, 138, 443-452.	4.1	13
2	EGFR-targeted pemetrexed therapy of malignant pleural mesothelioma. Drug Delivery and Translational Research, 2022, 12, 2527-2536.	3.0	3
3	Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. Journal of Controlled Release, 2022, 341, 498-510.	4.8	46
4	Macrophage-Targeted Hydroxychloroquine Nanotherapeutics for Rheumatoid Arthritis Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 8824-8837.	4.0	28
5	Immunotherapy of Malignant Glioma by Noninvasive Administration of TLR9 Agonist CpG Nanoâ€Immunoadjuvant. Advanced Science, 2022, 9, e2103689.	5.6	31
6	Polymersome-mediated cytosolic delivery of cyclic dinucleotide STING agonist enhances tumor immunotherapy. Bioactive Materials, 2022, 16, 1-11.	8.6	26
7	CD44-targeting hydrophobic phosphorylated gemcitabine prodrug nanotherapeutics augment lung cancer therapy. Acta Biomaterialia, 2022, 145, 200-209.	4.1	14
8	ApoE-mediated systemic nanodelivery of granzyme B and CpG for enhanced glioma immunotherapy. Journal of Controlled Release, 2022, 347, 68-77.	4.8	22
9	Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. Journal of Controlled Release, 2021, 329, 676-695.	4.8	111
10	A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia. Journal of Controlled Release, 2021, 329, 706-716.	4.8	13
11	α3 integrin-binding peptide-functionalized polymersomes loaded with volasertib for dually-targeted molecular therapy for ovarian cancer. Acta Biomaterialia, 2021, 124, 348-357.	4.1	10
12	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Dynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 17629-17637.	7.2	34
13	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Dynamic Therapy. Angewandte Chemie, 2021, 133, 17770-17778.	1.6	4
14	Systemic administration of polymersomal oncolytic peptide LTX-315 combining with CpG adjuvant and anti-PD-1 antibody boosts immunotherapy of melanoma. Journal of Controlled Release, 2021, 336, 262-273.	4.8	23
15	Daratumumab Immunopolymersomeâ€Enabled Safe and CD38â€Targeted Chemotherapy and Depletion of Multiple Myeloma. Advanced Materials, 2021, 33, e2007787.	11.1	25
16	Polymeric nanomedicines targeting hematological malignancies. Journal of Controlled Release, 2021, 337, 571-588.	4.8	15
17	Selective transferrin coating as a facile strategy to fabricate BBB-permeable and targeted vesicles for potent RNAi therapy of brain metastatic breast cancer in vivo. Journal of Controlled Release, 2021, 337, 521-529.	4.8	36
18	Emerging targeted drug delivery strategies toward ovarian cancer. Advanced Drug Delivery Reviews, 2021, 178, 113969.	6.6	31

#	Article	IF	Citations
19	Small, Smart, and LDLR-Specific Micelles Augment Sorafenib Therapy of Glioblastoma. Biomacromolecules, 2021, 22, 4814-4822.	2.6	13
20	Redox-sensitive iodinated polymersomes carrying histone deacetylase inhibitor as a dual-functional nano-radiosensitizer for enhanced radiotherapy of breast cancer. Drug Delivery, 2021, 28, 2301-2309.	2.5	10
21	Investigating the self-assembly and shape transformation of poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PDLLA) polymersomes by tailoring solvent-polymer interactions. Polymer Chemistry, 2020, 11, 275-280.	1.9	19
22	Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. Journal of Controlled Release, 2020, 319, 407-415.	4.8	74
23	Apolipoprotein E Peptide-Guided Disulfide-Cross-Linked Micelles for Targeted Delivery of Sorafenib to Hepatocellular Carcinoma. Biomacromolecules, 2020, 21, 716-724.	2.6	20
24	Hybrid Biodegradable Nanomotors through Compartmentalized Synthesis. Nano Letters, 2020, 20, 4472-4480.	4.5	56
25	GE11 peptide-installed chimaeric polymersomes tailor-made for high-efficiency EGFR-targeted protein therapy of orthotopic hepatocellular carcinoma. Acta Biomaterialia, 2020, 113, 512-521.	4.1	30
26	\hat{l}_{\pm} ₃ \hat{l}^{2} ₁ Integrin-Targeting Polymersomal Docetaxel as an Advanced Nanotherapeutic for Nonsmall Cell Lung Cancer Treatment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14905-14913.	4.0	26
27	Fluorinated α-Helical Polypeptides Synchronize Mucus Permeation and Cell Penetration toward Highly Efficient Pulmonary siRNA Delivery against Acute Lung Injury. Nano Letters, 2020, 20, 1738-1746.	4.5	108
28	CD44-targeted vesicles encapsulating granzyme B as artificial killer cells for potent inhibition of human multiple myeloma in mice. Journal of Controlled Release, 2020, 320, 421-430.	4.8	38
29	Molecular Programming of Biodegradable Nanoworms via Ionically Induced Morphology Switch toward Asymmetric Therapeutic Carriers. Small, 2019, 15, 1901849.	5.2	17
30	CD44â€Specific A6 Short Peptide Boosts Targetability and Anticancer Efficacy of Polymersomal Epirubicin to Orthotopic Human Multiple Myeloma. Advanced Materials, 2019, 31, e1904742.	11.1	49
31	Cyclic RGD-Functionalized and Disulfide-Crosslinked Iodine-Rich Polymersomes as a Robust and Smart Theranostic Agent for Targeted CT Imaging and Chemotherapy of Tumor. Theranostics, 2019, 9, 8061-8072.	4.6	34
32	Nanoagents Based on Poly(ethylene glycol)â€∢i>bà€Poly(<scp>l</scp> â€thyroxine) Block Copolypeptide for Enhanced Dualâ€Modality Imaging and Targeted Tumor Radiotherapy. Small, 2019, 15, e1902577.	5.2	15
33	Low-toxicity transferrin-guided polymersomal doxorubicin for potent chemotherapy of orthotopic hepatocellular carcinoma in vivo. Acta Biomaterialia, 2019, 92, 196-204.	4.1	40
34	Efficient and targeted drug/siRNA co-delivery mediated by reversibly crosslinked polymersomes toward anti-inflammatory treatment of ulcerative colitis (UC). Nano Research, 2019, 12, 659-667.	5.8	33
35	Reduction-responsive core-crosslinked hyaluronic acid-b-poly(trimethylene carbonate-co-dithiolane) Tj ETQq1 1 (negative breast tumor in vivo. Journal of Materials Chemistry B, 2018, 6, 3040-3047.).784314 r 2.9	gBT /Overloc 27
36	Lung cancer specific and reduction-responsive chimaeric polymersomes for highly efficient loading of pemetrexed and targeted suppression of lung tumor in vivo. Acta Biomaterialia, 2018, 70, 177-185.	4.1	22

#	Article	IF	CITATIONS
37	Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.	4.8	43
38	Selective Cell Penetrating Peptideâ€Functionalized Polymersomes Mediate Efficient and Targeted Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Advanced Healthcare Materials, 2018, 7, e1701135.	3.9	41
39	Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. Journal of Controlled Release, 2018, 278, 1-8.	4.8	92
40	GE11-Directed Functional Polymersomal Doxorubicin as an Advanced Alternative to Clinical Liposomal Formulation for Ovarian Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 3664-3671.	2.3	41
41	Targeted chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin. Signal Transduction and Targeted Therapy, 2018, 3, 32.	7.1	43
42	Protein Nanotherapeutics as an Emerging Modality for Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1800685.	3.9	58
43	Small-Sized and Robust Chimaeric Lipopepsomes: A Simple and Functional Platform with High Protein Loading for Targeted Intracellular Delivery of Protein Toxin in Vivo. Chemistry of Materials, 2018, 30, 6831-6838.	3.2	35
44	Granzyme B-loaded, cell-selective penetrating and reduction-responsive polymersomes effectively inhibit progression of orthotopic human lung tumor in vivo. Journal of Controlled Release, 2018, 290, 141-149.	4.8	52
45	Boosting RNAi therapy for orthotopic glioblastoma with nontoxic brain-targeting chimaeric polymersomes. Journal of Controlled Release, 2018, 292, 163-171.	4.8	52
46	Apolipoprotein E Peptide-Directed Chimeric Polymersomes Mediate an Ultrahigh-Efficiency Targeted Protein Therapy for Glioblastoma. ACS Nano, 2018, 12, 11070-11079.	7. 3	132
47	Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proofâ€ofâ€Concept Studies. Advanced Therapeutics, 2018, 1, 1800068.	1.6	12
48	Organocatalytic Ring-Opening Copolymerization of Trimethylene Carbonate and Dithiolane Trimethylene Carbonate: Impact of Organocatalysts on Copolymerization Kinetics and Copolymer Microstructures. Biomacromolecules, 2018, 19, 2294-2301.	2.6	32
49	Protein Toxin Chaperoned by LRPâ€1â€Targeted Virusâ€Mimicking Vesicles Induces Highâ€Efficiency Glioblastoma Therapy In Vivo. Advanced Materials, 2018, 30, e1800316.	11.1	121
50	Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. Journal of Controlled Release, 2017, 250, 9-19.	4.8	32
51	Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS Applied Materials & Enterfaces, 2017, 9, 3985-3994.	4.0	52
52	Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. Acta Biomaterialia, 2017, 50, 396-406.	4.1	97
53	A Smart Nanoâ€Prodrug Platform with Reactive Drug Loading, Superb Stability, and Fast Responsive Drug Release for Targeted Cancer Therapy. Macromolecular Bioscience, 2017, 17, 1600518.	2.1	19
54	Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer. Journal of Materials Chemistry B, 2017, 5, 5658-5667.	2.9	18

#	Article	IF	Citations
55	Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. Journal of Controlled Release, 2017, 259, 76-82.	4.8	84
56	ATN-161 Peptide Functionalized Reversibly Cross-Linked Polymersomes Mediate Targeted Doxorubicin Delivery into Melanoma-Bearing C57BL/6 Mice. Molecular Pharmaceutics, 2017, 14, 2538-2547.	2.3	41
57	Nanopolymersomes with an Ultrahigh Iodine Content for Highâ€Performance Xâ€Ray Computed Tomography Imaging In Vivo. Advanced Materials, 2017, 29, 1603997.	11.1	70
58	Bioresponsive Chimaeric Nanopolymersomes Enable Targeted and Efficacious Protein Therapy for Human Lung Cancers in Vivo. Chemistry of Materials, 2017, 29, 8757-8765.	3.2	41
59	Targeted inhibition of human hematological cancers <i>in vivo</i> by doxorubicin encapsulated in smart lipoic acid-crosslinked hyaluronic acid nanoparticles. Drug Delivery, 2017, 24, 1482-1490.	2.5	24
60	cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35651-35663.	4.0	48
61	Virusâ€Mimicking Chimaeric Polymersomes Boost Targeted Cancer siRNA Therapy In Vivo. Advanced Materials, 2017, 29, 1703285.	11.1	130
62	EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Acta Biomaterialia, 2017, 64, 323-333.	4.1	62
63	Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules, 2017, 18, 3207-3214.	2.6	50
64	NIR and UV-responsive degradable hyaluronic acid nanogels for CD44-targeted and remotely triggered intracellular doxorubicin delivery. Colloids and Surfaces B: Biointerfaces, 2017, 158, 547-555.	2.5	52
65	Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Enterfaces, 2017, 9, 27587-27595.	4.0	34
66	EGFR and CD44 Dual-Targeted Multifunctional Hyaluronic Acid Nanogels Boost Protein Delivery to Ovarian and Breast Cancers In Vitro and In Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24140-24147.	4.0	108
67	α _v β ₃ integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. International Journal of Nanomedicine, 2017, Volume 12, 7913-7921.	3.3	24
68	cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 2017, 28, 295103.	1.3	24
69	cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release, 2016, 233, 29-38.	4.8	121
70	Micelles with Sheddable Dendritic Polyglycerol Sulfate Shells Show Extraordinary Tumor Targetability and Chemotherapy <i>in Vivo</i> . ACS Applied Materials & Interfaces, 2016, 8, 27530-27538.	4.0	36
71	Glutathione-Sensitive Hyaluronic Acid-SS-Mertansine Prodrug with a High Drug Content: Facile Synthesis and Targeted Breast Tumor Therapy. Biomacromolecules, 2016, 17, 3602-3608.	2.6	35
72	Redox-Sensitive and Intrinsically Fluorescent Photoclick Hyaluronic Acid Nanogels for Traceable and Targeted Delivery of Cytochrome <i>c</i> to Breast Tumor in Mice. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21155-21162.	4.0	79

#	Article	IF	CITATIONS
73	Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials. Acta Biomaterialia, 2016, 45, 223-233.	4.1	43
74	Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx?. Journal of Controlled Release, 2016, 239, 149-158.	4.8	92
75	Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of Controlled Release, 2016, 244, 229-239.	4.8	54
76	Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate Sodium Encapsulated in Allâ€Functionâ€inâ€One Chimeric Polymersomes. Advanced Materials, 2016, 28, 8234-8239.	11.1	56
77	Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment <i>in Vivo</i> . Chemistry of Materials, 2016, 28, 8792-8799.	3.2	88
78	Vitamin E-Oligo(methyl diglycol <scp>l</scp> -glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles. Biomacromolecules, 2016, 17, 2367-2374.	2.6	34
79	Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. Journal of Controlled Release, 2016, 244, 326-335.	4.8	86
80	Novel cyclic azobenzene-containing vesicles: photo/reductant responsiveness and potential applications in colon disease treatment. RSC Advances, 2016, 6, 58755-58763.	1.7	18
81	Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in Avivo. Biomaterials, 2016, 84, 250-261.	5.7	257
82	Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent. Biomacromolecules, 2016, 17, 882-890.	2.6	25
83	Targeted hepatoma chemotherapy in vivo using galactose-decorated crosslinked pH-sensitive degradable micelles. Journal of Controlled Release, 2015, 213, e125-e126.	4.8	7
84	cRGD-Functionalized AuNR-cored PEG-PCL nanoparticles for efficacious glioma chemotherapy. Journal of Controlled Release, 2015, 213, e135.	4.8	4
85	Novel reversibly crosslinked chimaeric polypeptide polymersomes for active loading and intracellular release of doxorubicin hydrochloride. Journal of Controlled Release, 2015, 213, e56-e57.	4.8	0
86	Anisamide-functionalized intelligent polymersomes mediate targeted delivery of methotrexate into lung cancer cells. Journal of Controlled Release, 2015, 213, e114.	4.8	1
87	Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. Journal of Controlled Release, 2015, 210, 125-133.	4.8	84
88	Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today, 2015, 10, 656-670.	6.2	159
89	Biodegradable glycopolymer-b-poly(ε-caprolactone) block copolymer micelles: versatile construction, tailored lactose functionality, and hepatoma-targeted drug delivery. Journal of Materials Chemistry B, 2015, 3, 2308-2317.	2.9	41
90	Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. Journal of Controlled Release, 2015, 205, 144-154.	4.8	250

#	Article	IF	Citations
91	Enzymatically and Reductively Degradable α-Amino Acid-Based Poly(ester amide)s: Synthesis, Cell Compatibility, and Intracellular Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 597-605.	2.6	51
92	Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered Intracellular Drug Release. Biomacromolecules, 2015, 16, 2228-2236.	2.6	103
93	Biocompatible and bioreducible micelles fabricated from novel \hat{i} ±-amino acid-based poly(disulfide) Tj ETQq1 1 0.78	4314 rgBT 1.9	JOverlock 27
94	Reversibly Cross-Linked Polyplexes Enable Cancer-Targeted Gene Delivery via Self-Promoted DNA Release and Self-Diminished Toxicity. Biomacromolecules, 2015, 16, 1390-1400.	2.6	67
95	pH-Responsive Chimaeric Pepsomes Based on Asymmetric Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Copolymer for Efficient Loading and Active Intracellular Delivery of Doxorubicin Hydrochloride. Biomacromolecules. 2015, 16, 1322-1330.		Td (glycol)
96	Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells. Biomacromolecules, 2015, 16, 1726-1735.	2.6	73
97	Reductively degradable α-amino acid-based poly(ester amide)-graft-galactose copolymers: facile synthesis, self-assembly, and hepatoma-targeting doxorubicin delivery. Biomaterials Science, 2015, 3, 1134-1146.	2.6	22
98	Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. Journal of Controlled Release, 2015, 220, 704-714.	4.8	73
99	Functional polypeptide and hybrid materials: Precision synthesis via $\hat{l}\pm$ -amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science, 2014, 39, 330-364.	11.8	310
100	Glyco-Nanoparticles with Sheddable Saccharide Shells: A Unique and Potent Platform for Hepatoma-Targeting Delivery of Anticancer Drugs. Biomacromolecules, 2014, 15, 900-907.	2.6	98
101	Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules, 2014, 15, 1955-1969.	2.6	447
102	Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterialia, 2014, 10, 2159-2168.	4.1	75
103	Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release. Antioxidants and Redox Signaling, 2014, 21, 755-767.	2.5	64
104	cRGD-directed, NIR-responsive and robust AuNR/PEG–PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. Journal of Controlled Release, 2014, 195, 63-71.	4.8	81
105	pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine, 2014, 9, 487-499.	1.7	152
106	Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 2014, 190, 398-414.	4.8	142
107	Galactose-installed photo-crosslinked pH-sensitive degradable micelles for active targeting chemotherapy of hepatocellular carcinoma in mice. Journal of Controlled Release, 2014, 193, 154-161.	4.8	78
108	<i>In Situ</i> Forming Hydrogels via Catalyst-Free and Bioorthogonal "Tetrazole–Alkene―Photo-Click Chemistry. Biomacromolecules, 2013, 14, 2814-2821.	2.6	79

#	Article	IF	Citations
109	Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery, 2013, 10, 1109-1122.	2.4	68
110	Acetal-Linked Paclitaxel Prodrug Micellar Nanoparticles as a Versatile and Potent Platform for Cancer Therapy. Biomacromolecules, 2013, 14, 2772-2780.	2.6	165
111	Galactose-Decorated Reduction-Sensitive Degradable Chimaeric Polymersomes as a Multifunctional Nanocarrier To Efficiently Chaperone Apoptotic Proteins into Hepatoma Cells. Biomacromolecules, 2013, 14, 2873-2882.	2.6	65
112	Ligand-Directed Reduction-Sensitive Shell-Sheddable Biodegradable Micelles Actively Deliver Doxorubicin into the Nuclei of Target Cancer Cells. Biomacromolecules, 2013, 14, 3723-3730.	2.6	116
113	A Simple and Versatile Synthetic Strategy to Functional Polypeptides via Vinyl Sulfone-Substituted <scp>I</scp> -Cysteine <i>N</i> -Carboxyanhydride. Macromolecules, 2013, 46, 6723-6730.	2.2	56
114	Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of Controlled Release, 2013, 169, 171-179.	4.8	336
115	Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34, 5262-5272.	5.7	182
116	Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34, 3647-3657.	5.7	1,155
117	In Situ Forming Reduction-Sensitive Degradable Nanogels for Facile Loading and Triggered Intracellular Release of Proteins. Biomacromolecules, 2013, 14, 1214-1222.	2.6	108
118	Functional Poly(Î μ -caprolactone)s via Copolymerization of Î μ -Caprolactone and Pyridyl Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles. Macromolecules, 2013, 46, 699-707.	2.2	90
119	Gold Nanorod-Cored Biodegradable Micelles as a Robust and Remotely Controllable Doxorubicin Release System for Potent Inhibition of Drug-Sensitive and -Resistant Cancer Cells. Biomacromolecules, 2013, 14, 2411-2419.	2.6	112
120	Reversibly Shielded DNA Polyplexes Based on Bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA Triblock Copolymers Mediate Markedly Enhanced Nonviral Gene Transfection. Biomacromolecules, 2012, 13, 769-778.	2.6	83
121	Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7, 467-480.	6.2	530
122	Precise control of intracellular drug release and anti-tumor activity of biodegradable micellar drugs via reduction-sensitive shell-shedding. Soft Matter, 2012, 8, 3949.	1.2	67
123	Poly(ethylene oxide) Grafted with Short Polyethylenimine Gives DNA Polyplexes with Superior Colloidal Stability, Low Cytotoxicity, and Potent In Vitro Gene Transfection under Serum Conditions. Biomacromolecules, 2012, 13, 881-888.	2.6	49
124	pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials, 2012, 33, 7291-7299.	5.7	184
125	pH and Reduction Dual-Bioresponsive Polymersomes for Efficient Intracellular Protein Delivery. Langmuir, 2012, 28, 2056-2065.	1.6	122
126	Intracellular drug release nanosystems. Materials Today, 2012, 15, 436-442.	8.3	216

#	Article	IF	CITATIONS
127	Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma. Journal of Controlled Release, 2012, 164, 338-345.	4.8	157
128	Biodegradable polymersomes with an ionizable membrane: Facile preparation, superior protein loading, and endosomal pH-responsive protein release. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 103-111.	2.0	49
129	Biodegradable poly(ε-caprolactone)-g-poly(2-hydroxyethyl methacrylate) graft copolymer micelles as superior nano-carriers for "smart―doxorubicin release. Journal of Materials Chemistry, 2012, 22, 11730.	6.7	43
130	Reduction-Responsive Disassemblable Core-Cross-Linked Micelles Based on Poly(ethylene) Tj ETQq0 0 0 rgBT /Ove Intracellular Anticancer Drug Release. Biomacromolecules, 2012, 13, 2429-2438.	erlock 10 T 2.6	f 50 627 Td 181
131	pH-sensitive degradable hydrophobe modified 1.8 kDa branched polyethylenimine as "artificial viruses― for safe and efficient intracellular gene transfection. Macromolecular Research, 2012, 20, 327-334.	1.0	15
132	Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. Journal of Materials Chemistry, 2011, 21, 19013.	6.7	128
133	Acid-Activatable Prodrug Nanogels for Efficient Intracellular Doxorubicin Release. Biomacromolecules, 2011, 12, 3612-3620.	2.6	123
134	Unprecedented Access to Functional Biodegradable Polymers and Coatings. Macromolecules, 2011, 44, 6009-6016.	2.2	88
135	Endosomal pH-Activatable Poly(ethylene oxide)- <i>graft</i> -Doxorubicin Prodrugs: Synthesis, Drug Release, and Biodistribution in Tumor-Bearing Mice. Biomacromolecules, 2011, 12, 1460-1467.	2.6	145
136	Polymersomes Spanning from Nano- to Microscales: Advanced Vehicles for Controlled Drug Delivery and Robust Vesicles for Virus and Cell Mimicking. Journal of Physical Chemistry Letters, 2011, 2, 1533-1539.	2.1	116
137	Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. Journal of Materials Chemistry, 2011, 21, 5786.	6.7	82
138	Lipoic Acid Modified Low Molecular Weight Polyethylenimine Mediates Nontoxic and Highly Potent <i>in Vitro</i> Gene Transfection. Molecular Pharmaceutics, 2011, 8, 2434-2443.	2.3	91
139	Galactose-Decorated Cross-Linked Biodegradable Poly(ethylene glycol)- <i>b</i> -ci>b-ci>b-poly(Îμ-caprolactone) Block Copolymer Micelles for Enhanced Hepatoma-Targeting Delivery of Paclitaxel. Biomacromolecules, 2011, 12, 3047-3055.	2.6	146
140	Branched Polyethylenimine Derivatives with Reductively Cleavable Periphery for Safe and Efficient In Vitro Gene Transfer. Biomacromolecules, 2011, 12, 1032-1040.	2.6	90
141	Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 2011, 152, 2-12.	4.8	1,187
142	Biodegradable chimaeric polymersomes mediate highly efficient delivery of exogenous proteins into cells. Journal of Controlled Release, 2011, 152, e136-e137.	4.8	1
143	Reduction-responsive cationic biodegradable micelles based on PDMAEMA-SS-PCL-SS-PDMAEMA triblock copolymers for gene delivery. Journal of Controlled Release, 2011, 152, e188-e190.	4.8	8
144	Rapidly pH-responsive degradable polymersomes for triggered release of hydrophilic and hydrophobic anticancer drugs. Journal of Controlled Release, 2011, 152, e7-e9.	4.8	2

#	Article	IF	Citations
145	Reversibly crosslinked poly(vinyl alcohol) nanoparticles for triggered release of doxorubicin. Journal of Controlled Release, 2011, 152, e54-e55.	4.8	2
146	Reduction-responsive shell-sheddable biodegradable micelles for intracellular doxorubicin delivery. Journal of Controlled Release, 2011, 152, e84-e85.	4.8	1
147	Non-viral gene transfection inÂvitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine. Biomaterials, 2011, 32, 9109-9119.	5.7	71
148	α-Amino Acid Containing Degradable Polymers as Functional Biomaterials: Rational Design, Synthetic Pathway, and Biomedical Applications. Biomacromolecules, 2011, 12, 1937-1955.	2.6	182
149	Water soluble poly(histamine acrylamide) with superior buffer capacity mediates efficient and nontoxic in vitro gene transfection. Journal of Polymer Science Part A, 2011, 49, 3366-3373.	2.5	10
150	Controlled surfaceâ€initiated ringâ€opening polymerization of <scp>L</scp> â€lactide from risedronateâ€anchored hydroxyapatite nanocrystals: Novel synthesis of biodegradable hydroxyapatite/poly(<scp>L</scp> â€lactide) nanocomposites. Journal of Polymer Science Part A, 2011, 49, 4379-4386.	2.5	6
151	Novel injectable biodegradable glycol chitosanâ€based hydrogels crosslinked by Michaelâ€type addition reaction with oligo(acryloyl carbonate)â€ <i>b</i> â€ <i>b</i> â€poly(ethylene glycol)â€ <i>b</i> â€oligo(acryloyl) Tj ETQq1	l 0. za 431	4 rgBT /Overlo
152	pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. Journal of Controlled Release, 2010, 142, 40-46.	4.8	430
153	Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. Journal of Controlled Release, 2010, 146, 400-408.	4.8	67
154	Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers. Biomaterials, 2010, 31, 2408-2416.	5.7	402
155	The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials, 2010, 31, 7575-7585.	5.7	162
156	Cationic methacrylate copolymers containing primary and tertiary amino side groups: Controlled synthesis via RAFT polymerization, DNA condensation, and <i>in vitro</i> gene transfection. Journal of Polymer Science Part A, 2010, 48, 2869-2877.	2.5	51
157	Shell-Sheddable Micelles Based on Dextran-SS-Poly(ε-caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin. Biomacromolecules, 2010, 11, 848-854.	2.6	303
158	Versatile Synthesis of Functional Biodegradable Polymers by Combining Ring-Opening Polymerization and Postpolymerization Modification via Michael-Type Addition Reaction. Macromolecules, 2010, 43, 201-207.	2.2	160
159	Reductionâ€Sensitive Reversibly Crosslinked Biodegradable Micelles for Triggered Release of Doxorubicin. Macromolecular Bioscience, 2009, 9, 1254-1261.	2.1	96
160	Reversibly Stabilized Multifunctional Dextran Nanoparticles Efficiently Deliver Doxorubicin into the Nuclei of Cancer Cells. Angewandte Chemie - International Edition, 2009, 48, 9914-9918.	7.2	419
161	Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 2009, 30, 6358-6366.	5.7	414
162	Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 2009, 30, 2180-2198.	5.7	1,045

#	Article	IF	CITATIONS
163	Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules, 2009, 10, 197-209.	2.6	1,037
164	Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. Journal of Materials Chemistry, 2009, 19, 4183.	6.7	168
165	pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and Triggered Drug Release. Biomacromolecules, 2009, 10, 1727-1735.	2.6	217
166	Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. Journal of Controlled Release, 2005, 101, 187-198.	4.8	218
167	Polyethylene glycol-grafted polystyrene particles. Journal of Biomedical Materials Research Part B, 2004, 70A, 49-58.	3.0	63
168	Pegylated polystyrene particles as a model system for artificial cells. Journal of Biomedical Materials Research - Part A, 2004, 70A, 97-106.	2.1	35
169	Biodegradable Polymersomes. Macromolecules, 2003, 36, 3004-3006.	2.2	221
170	Preparation of polymer-supported zirconocene catalysts and olefin polymerization. Journal of Applied Polymer Science, 1999, 71, 2253-2258.	1.3	21
171	Polymer-supported zirconocene catalyst for ethylene polymerization. Journal of Polymer Science Part A, 1999, 37, 37-46.	2.5	31
172	Controlled Synthesis of L-Lactide-b-ε-Caprolactone Block Copolymers Using a Rare Earth Complex as Catalyst. Polymer Journal, 1999, 31, 633-636.	1.3	22