
Tatsu Kobayakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differences in Perception of Everyday Odors: a Japanese-German Cross-cultural Study. Chemical Senses, 1998, 23, 31-38.	1.1	264
2	Development of a Smell Identification Test Using a Novel Stick-Type Odor Presentation Kit. Chemical Senses, 2006, 31, 379-391.	1.1	160
3	The primary gustatory area in human cerebral cortex studied by magnetoencephalography. Neuroscience Letters, 1996, 212, 155-158.	1.0	110
4	Functional MRI Detection of Activation in the Primary Gustatory Cortices in Humans. Chemical Senses, 2005, 30, 583-592.	1.1	83
5	Enhancement of Sweetness Ratings of Aspartame by a Vanilla Odor Presented Either by Orthonasal or Retronasal Routes. Perceptual and Motor Skills, 2001, 92, 1002-1008.	0.6	82
6	The Effect of Visual Images on Perception of Odors. Chemical Senses, 2005, 30, i244-i245.	1.1	81
7	Gustatory Evoked Cortical Activity in Humans Studied by Simultaneous EEG and MEG Recording. Chemical Senses, 2002, 27, 629-634.	1.1	69
8	Smell Identification in Japanese Parkinson's Disease Patients: Using the Odor Stick identification Test for Japanese Subjects. Internal Medicine, 2008, 47, 1887-1892.	0.3	64
9	Cross-Cultural Comparison of Data Using the Odor Stick Identification Test for Japanese (OSIT-J). Chemical Senses, 2006, 31, 335-342.	1.1	55
10	Effects of Cognitive Factors on Perceived Odor Intensity in Adaptation/Habituation Processes: from 2 Different Odor Presentation Methods. Chemical Senses, 2007, 33, 163-171.	1.1	43
11	Cardiac sympathetic degeneration correlates with olfactory function in Parkinson's disease. Movement Disorders, 2010, 25, 1143-1149.	2.2	42
12	Laterality of Human Primary Gustatory Cortex Studied by MEG. Chemical Senses, 2005, 30, 657-666.	1.1	41
13	High-speed gas concentration measurement using ultrasound. Sensors and Actuators A: Physical, 2008, 144, 1-6.	2.0	39
14	Evaluation of Card-Type Odor Identification Test for Japanese Patients with Olfactory Disturbance. Annals of Otology, Rhinology and Laryngology, 2012, 121, 413-418.	0.6	39
15	Differences in odor identification among clinical subtypes of Parkinson's disease. European Journal of Neurology, 2011, 18, 425-429.	1.7	36
16	Location of the Primary Gustatory Area in Humans and its Properties, Studied by Magnetoencephalography. Chemical Senses, 2005, 30, i226-i227.	1.1	26
17	Taste of breath: the temporal order of taste and smell synchronized with breathing as a determinant for taste and olfactory integration. Scientific Reports, 2017, 7, 8922.	1.6	26
18	Representation of Salty Taste Stimulus Concentrations in the Primary Gustatory Area in Humans. Chemosensory Perception, 2008, 1, 227-234.	0.7	25

#	Article	IF	CITATIONS
19	Effects of intermittent odours on cognitive-motor performance and brain functioning during mental fatigue. Ergonomics, 2012, 55, 1-11.	1.1	25
20	Temporal Process from Receptors to Higher Brain in Taste Detection Studied by Gustatory-Evoked Magnetic Fields and Reaction Times. Annals of the New York Academy of Sciences, 1998, 855, 493-497.	1.8	17
21	High-speed gas sensor for chemosensory event-related potentials or magnetic fields. Journal of Neuroscience Methods, 2006, 152, 91-96.	1.3	16
22	Olfactory Evaluation Using a Self-Administered Odor Questionnaire. Nihon Bika Gakkai Kaishi (Japanese) Tj ETQo	0 0 0 rgB	T /Overlock 10 14
23	Clinical application of a card-type odor identification test to olfactory assessment in Parkinson's disease. Auris Nasus Larynx, 2013, 40, 173-176.	0.5	14
24	Cerebral Imaging in Taste. Chemical Senses, 2005, 30, i230-i231.	1.1	13
25	High consumption increases sensitivity to after-flavor of canned coffee beverages. Food Quality and Preference, 2015, 44, 162-171.	2.3	13
26	Multi-Sip Time–Intensity Evaluation of Retronasal Aroma after Swallowing Oolong Tea Beverage. Foods, 2018, 7, 177.	1.9	11
27	Development of a Time–Intensity Evaluation System for Consumers: Measuring Bitterness and Retronasal Aroma of Coffee Beverages in 106 Untrained Panelists. Journal of Food Science, 2015, 80, S1343-51.	1.5	10
28	Usefulness of curry odorant of odor stick identification test for Japanese in olfactory impairment screening. Acta Oto-Laryngologica, 2009, 129, 91-94.	0.3	9
29	Temporal Characteristics of Neural Activity Associated with Perception of Gustatory Stimulus Intensity in Humans. Chemosensory Perception, 2012, 5, 80-86.	0.7	9
30	Variations in Intensity Curves during Odor Exposure. Journal of Japan Association on Odor Environment, 2004, 35, 17-21.	0.1	9
31	A high-concentration NaCl solution does not stimulate the human trigeminal nerve at the tip of the tongue. Acta Oto-Laryngologica, 2007, 127, 754-759.	0.3	8
32	Retronasal aroma allows feature extraction from taste of a traditional Japanese confection. Flavour, 2013, 2, 26.	2.3	8
33	Construction of a measurement system for simultaneity judgment using odor and taste stimuli. Journal of Neuroscience Methods, 2014, 221, 132-138.	1.3	8
34	Familiarity and Retronasal Aroma Alter Food Perception. Chemosensory Perception, 2018, 11, 77-94.	0.7	8
35	Simultaneity judgment using olfactory–visual, visual–gustatory, and olfactory–gustatory combinations. PLoS ONE, 2017, 12, e0174958.	1.1	8
36	A multi-link system control strategy based on biological reaching movement. Advanced Robotics, 2006, 20, 661-679.	1.1	6

ΤΑΤSU ΚΟΒΑΥΑΚΑWA

#	Article	IF	CITATIONS
37	Screening for Age-Related Olfactory Decline Using a Card-Type Odor Identification Test Designed for Use with Japanese People. Chemosensory Perception, 2021, 14, 1-10.	0.7	6
38	Age-Related Change in the Time Course of Perceived Odor Intensity. Chemosensory Perception, 2016, 9, 14-26.	0.7	5
39	Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions. Beverages, 2018, 4, 28.	1.3	5
40	Trial measurement of brain activity underlying olfactory–gustatory synchrony perception using eventâ€related potentials from five female participants. Journal of Neuroscience Research, 2019, 97, 253-266.	1.3	5
41	Context Effect on Temporal Resolution of Olfactory–Gustatory, Visual–Gustatory, and Olfactory–Visual Synchrony Perception. Chemosensory Perception, 2021, 14, 27-40.	0.7	5
42	Beer Adsorption on a Lipid Membrane as Related to Sensory Evaluation. Journal of the American Society of Brewing Chemists, 2001, 59, 167-171.	0.8	4
43	Handedness: dependent asymmetrical location of the human primary gustatory area, area G. NeuroReport, 2009, 20, 450-455.	0.6	4
44	Interaction between Olfaction and Gustation by Using Synchrony Perception Task. I-Perception, 2011, 2, 964-964.	0.8	4
45	Effect of a warmâ€up sample on stabilizing the performance of untrained panelists in time–intensity evaluation. Journal of Sensory Studies, 2018, 33, e12309.	0.8	4
46	Expanded olfactometer for measuring reaction time to a target odor during background odor presentation. Heliyon, 2019, 5, e01254.	1.4	4
47	Identification of perceptual attributes affecting preference for vegetables using item-focused and consumer-focused approaches. Food Quality and Preference, 2022, 95, 104357.	2.3	4
48	Effect of Description of Odor on Perception and Adaptation of the Odor. Journal of Japan Association on Odor Environment, 2004, 35, 22-25.	0.1	4
49	Traditional Japanese confection overseas: Cultural difference and retronasal aroma affect flavor preference and umami perception. Food Quality and Preference, 2021, 92, 104204.	2.3	3
50	Title is missing!. Japanese Journal of Research on Emotions, 2003, 10, 25-33.	0.0	3
51	The effects of cognition on the hedonics of offensive odorants by a measurement system for odor adaptation. Journal of Japan Association on Odor Environment, 2007, 38, 18-23.	0.1	3
52	Superiority of Experts Over Novices in Trueness and Precision of Concentration Estimation of Sodium Chloride Solutions. Chemical Senses, 2013, 38, 251-258.	1.1	2
53	A method for psychophysical screening of odorants for use in city gas based on olfactory adaptation tolerance. Chemosensory Perception, 2016, 9, 120-130.	0.7	2
54	Nostalgia evocation through seasonality-conscious purchasing behavior revealed by online survey using vegetable names. Scientific Reports, 2022, 12, 5568.	1.6	2

ΤΑΤSU ΚΟΒΑΥΑΚΑWA

#	Article	IF	CITATIONS
55	Background stimulus delays detection of target stimulus in a familiar odor–odor combination. Scientific Reports, 2021, 11, 11987.	1.6	1
56	Subjective Intensity for Intermittent Short-Duration Odor: Cognitive and Learning Effects. Journal of Japan Association on Odor Environment, 2005, 36, 23-30.	0.1	1
57	Relation of time intensity curves with perceptual characteristics during odor exposure. Journal of Japan Association on Odor Environment, 2008, 39, 399-407.	0.1	1
58	Classification of consumers based on goodness-of-fit evaluation into existing category using city gas odor quality. Journal of Japan Association on Odor Environment, 2010, 41, 421-433.	0.1	1
59	Time-course transition of olfactory fatigue for city gas odor. Journal of Japan Association on Odor Environment, 2012, 43, 45-53.	0.1	1
60	Brain mechanism of taste sensation. Journal of Japan Association on Odor Environment, 2006, 37, 398-407.	0.1	0
61	Odor description affects the central processing of odor. Journal of Japan Association on Odor Environment, 2006, 37, 9-14.	0.1	0
62	Influence of description-manipulation of the same odor stimulus on cardiovascular response. Journal of Japan Association on Odor Environment, 2009, 40, 177-185.	0.1	0
63	Cognitive Modification in Existing Odor Category by Discrimination Learning and Recognition Memory Tasks. Journal of Japan Association on Odor Environment, 2010, 41, 334-348.	0.1	0
64	Effects of emotional information toward the same odor stimulus The Proceedings of the Annual Convention of the Japanese Psychological Association, 2010, 74, 1AM143-1AM143.	0.0	0
65	Cognitive metamorphosis for unacceptability evaluation into existing category using city gas odor quality. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2010, 74, 3PM109-3PM109.	0.0	0
66	Effects of odor stimuli on correspondence evaluation to colors and shapes. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2010, 74, 3EV031-3EV031.	0.0	0
67	Qualitative metamorphosis in the template for odor category, caused by repeated odor presentation. Journal of Japan Association on Odor Environment, 2011, 42, 361-370.	0.1	0
68	Study on retrieval latency and retrieved content of autobiographical memories induced by olfactory / visual / olfactory and visual cues. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2013, 77, 2PM-017-2PM-017.	0.0	0
69	Quantification of the facility with which adaptation to continuouslypresented odors occurs. Journal of Japan Association on Odor Environment, 2014, 45, 38-45.	0.1	0
70	The development of experiment device to present olfactory stimulus corresponding to respiration state. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2015, 79, 1PM-002-1PM-002.	0.0	0
71	Influence of odor identification ability and aging on autobiographical memory cued by odor. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2018, 82, 1PM-073-1PM-073.	0.0	0
72	Odor identification ability, odor imagery ability, subjective well-being, and autobiographical memory in elderly people. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2019, 83, 1A-054-1A-054.	0.0	0

#	Article	IF	CITATIONS
73	Development story of smell identification tests for Japanese: from classification of everyday odors to Open Essence. Journal of Japan Association on Odor Environment, 2022, 53, 190-196.	0.1	0