Jaideep Kapur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514877/publications.pdf Version: 2024-02-01

INDEED KADUD

#	Article	IF	CITATIONS
1	Focal impaired awareness seizures in a rodent model: A functional anatomy. Epilepsia Open, 2022, 7, 110-123.	2.4	3
2	Neuronal circuits sustaining neocortical-injury-induced status epilepticus. Neurobiology of Disease, 2022, 165, 105633.	4.4	10
3	Efficient Learning of Transform-Domain LMS Filter Using Graph Laplacian. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP, 1-13.	11.3	1
4	Distinct Roles of Rodent Thalamus and Corpus Callosum in Seizure Generalization. Annals of Neurology, 2022, 91, 682-696.	5.3	12
5	Construction of Local Field Potential Microelectrodes for in vivo Recordings from Multiple Brain Structures Simultaneously. Journal of Visualized Experiments, 2022, , .	0.3	0
6	Treatment of Toxin-Related Status Epilepticus With Levetiracetam, Fosphenytoin, or Valproate in Patients Enrolled in the Established Status Epilepticus Treatment Trial. Annals of Emergency Medicine, 2022, 80, 194-202.	0.6	3
7	Early Exposure of Fosphenytoin, Levetiracetam, and Valproic Acid After Highâ€Dose Intravenous Administration in Young Children With Benzodiazepineâ€Refractory Status Epilepticus. Journal of Clinical Pharmacology, 2021, 61, 763-768.	2.0	3
8	Progesterone modulates neuronal excitability bidirectionally. Neuroscience Letters, 2021, 744, 135619.	2.1	24
9	Patterns of benzodiazepine underdosing in the Established Status Epilepticus Treatment Trial. Epilepsia, 2021, 62, 795-806.	5.1	39
10	Early Neurologic Recovery, Practice Pattern Variation, and the Risk of Endotracheal Intubation Following Established Status Epilepticus. Neurology, 2021, 96, e2372-e2386.	1.1	6
11	Synergistic effect of sleep depth and seizures correlates with postictal heart rate. Epilepsia, 2021, 62, e65-e69.	5.1	0
12	Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain, 2021, 144, 2074-2091.	7.6	21
13	Mechanism of seizure-induced retrograde amnesia. Progress in Neurobiology, 2021, 200, 101984.	5.7	15
14	A pharmacokinetic simulation study to assess the performance of a sparse blood sampling approach to quantify early drug exposure. Clinical and Translational Science, 2021, 14, 1444-1451.	3.1	1
15	Limbic progesterone receptor activity enhances neuronal excitability and seizures. Epilepsia, 2021, 62, 1946-1959.	5.1	7
16	Anticonvulsant dopamine type 2 receptor agonist activates inhibitory parvalbumin interneurons. Epilepsia, 2021, 62, e147-e152.	5.1	6
17	Connectivity and Neuronal Synchrony during Seizures. Journal of Neuroscience, 2021, 41, 7623-7635.	3.6	14
18	Difluoroboron β-diketonate polylactic acid oxygen nanosensors for intracellular neuronal imaging. Scientific Reports, 2021, 11, 1076.	3.3	11

#	Article	IF	CITATIONS
19	Improvement in Symptomatic Gastroparesis With Increased Vagal Nerve Stimulation. Neurology: Clinical Practice, 2021, 11, e18-e19.	1.6	1
20	αâ€Aminoâ€3â€Hydroxyâ€5â€Methylâ€4â€Isoxazolepropionic Acid Receptor Plasticity Sustains Severe, Fatal St Epilepticus. Annals of Neurology, 2020, 87, 84-96.	atus 5.3	22
21	Neocortical injury–induced status epilepticus. Epilepsia, 2020, 61, 2811-2824.	5.1	28
22	Characterization of kindled VGAT re mice as a new animal model of temporal lobe epilepsy. Epilepsia, 2020, 61, 2277-2288.	5.1	4
23	The association of patient weight and dose of fosphenytoin, levetiracetam, and valproic acid with treatment success in status epilepticus. Epilepsia, 2020, 61, e66-e70.	5.1	8
24	Reduced neurosteroid potentiation of GABA A receptors in epilepsy and depolarized hippocampal neurons. Annals of Clinical and Translational Neurology, 2020, 7, 527-542.	3.7	10
25	Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial. Lancet, The, 2020, 395, 1217-1224.	13.7	143
26	Continuous Video Electroencephalogram during Hypoxia-Ischemia in Neonatal Mice. Journal of Visualized Experiments, 2020, , .	0.3	4
27	Neurobiology of organophosphate-induced seizures. Epilepsy and Behavior, 2019, 101, 106426.	1.7	20
28	Circuits generating secondarily generalized seizures. Epilepsy and Behavior, 2019, 101, 106474.	1.7	20
29	Progesterone receptor activation regulates seizure susceptibility. Annals of Clinical and Translational Neurology, 2019, 6, 1302-1310.	3.7	15
30	Parallel pathways of seizure generalization. Brain, 2019, 142, 2336-2351.	7.6	25
31	Lessons from the Established Status Epilepticus Treatment Trial. Epilepsy and Behavior, 2019, 101, 106296.	1.7	8
32	Neuronal Circuit Activity during Neonatal Hypoxic–Ischemic Seizures in Mice. Annals of Neurology, 2019, 86, 927-938.	5.3	17
33	Underdosing of Benzodiazepines in Patients With Status Epilepticus Enrolled in Established Status Epilepticus Treatment Trial. Academic Emergency Medicine, 2019, 26, 940-943.	1.8	39
34	WONOEP appraisal: Network concept from an imaging perspective. Epilepsia, 2019, 60, 1293-1305.	5.1	14
35	Randomized Trial of Three Anticonvulsant Medications for Status Epilepticus. New England Journal of Medicine, 2019, 381, 2103-2113.	27.0	342
36	Neurosteroid regulation of GABAA receptors: A role in catamenial epilepsy. Brain Research, 2019, 1703, 31-40.	2.2	38

#	Article	IF	CITATIONS
37	7 FLIM-FRET microscopy. , 2018, , 141-162.		2
38	A novel therapeutic approach for treatment of catamenial epilepsy. Neurobiology of Disease, 2018, 111, 127-137.	4.4	36
39	Electroencephalography and behavior patterns during experimental status epilepticus. Epilepsia, 2018, 59, 369-380.	5.1	19
40	Role of <scp>NMDA</scp> receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open, 2018, 3, 165-168.	2.4	31
41	Mechanisms of status epilepticus: <i>α</i> â€Aminoâ€3â€hydroxyâ€5â€methylâ€4â€isoxazolepropionic acid rec hypothesis. Epilepsia, 2018, 59, 78-81.	eptor 5.1	21
42	Neurosteroidâ€sensitive δâ€GABA _A receptors: A role in epileptogenesis?. Epilepsia, 2017, 58, 494-504.	5.1	19
43	Isocitrate dehydrogenase mutations. Neurology, 2017, 88, 1782-1783.	1.1	1
44	Gaining perspective on SUDEP. Neurology, 2017, 88, 1598-1599.	1.1	2
45	Enhanced AMPA receptor-mediated neurotransmission on CA1 pyramidal neurons during status epilepticus. Neurobiology of Disease, 2017, 103, 45-53.	4.4	45
46	Flupirtine and diazepam combination terminates established status epilepticus: results in three rodent models. Annals of Clinical and Translational Neurology, 2017, 4, 888-896.	3.7	15
47	Whole brain reconstruction from multilayered sections of a mouse model of status epilepticus. , 2017, , .		2
48	Neurosteroid Regulation of Seizures: Role of GABAA Receptor Plasticity. Methods in Pharmacology and Toxicology, 2016, , 127-146.	0.2	1
49	The SAMUKeppra study in prehospital status epilepticus: lessons for future study. Annals of Translational Medicine, 2016, 4, 468-468.	1.7	7
50	Synchronization of action potentials during low-magnesium-induced bursting. Journal of Neurophysiology, 2015, 113, 2461-2470.	1.8	9
51	Increased excitability and excitatory synaptic transmission during in vitro ischemia in the neonatal mouse hippocampus. Neuroscience, 2015, 310, 279-289.	2.3	28
52	Ca _V 3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy. Genes and Development, 2015, 29, 1535-1551.	5.9	48
53	A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia, 2014, 55, 203-213.	5.1	30
54	Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiology of Disease, 2014, 62, 44-55.	4.4	28

#	Article	IF	CITATIONS
55	Impact of transient acute hypoxia on the developing mouse EEG. Neurobiology of Disease, 2014, 68, 37-46.	4.4	29
56	Issues related to development of antiepileptogenic therapies. Epilepsia, 2013, 54, 35-43.	5.1	86
57	GABAA receptor membrane insertion rates are specified by their subunit composition. Molecular and Cellular Neurosciences, 2013, 56, 201-211.	2.2	7
58	The Established Status Epilepticus Trial 2013. Epilepsia, 2013, 54, 89-92.	5.1	91
59	Somatostatin type-2 receptor activation inhibits glutamate release and prevents status epilepticus. Neurobiology of Disease, 2013, 54, 94-104.	4.4	24
60	GABAergic transmission in temporal lobe epilepsy: The role of neurosteroids. Experimental Neurology, 2013, 244, 36-42.	4.1	29
61	<i>N</i> -Methyl-D-Aspartic Acid Receptor Activation Downregulates Expression of <i>δ</i> Subunit-Containing GABA _A Receptors in Cultured Hippocampal Neurons. Molecular Pharmacology, 2013, 84, 1-11.	2.3	17
62	Are myotonia and epilepsy linked by a chloride channel?. Neurology, 2013, 80, 1074-1075.	1.1	3
63	Receptor trafficking hypothesis revisited: Plasticity of AMPA receptors during established status epilepticus. Epilepsia, 2013, 54, 14-16.	5.1	45
64	Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Research, 2012, 101, 268-276.	1.6	67
65	Emerging Role of Pannexins in Seizures and Status Epilepticus. Epilepsy Currents, 2012, 12, 113-114.	0.8	2
66	Calciumâ€permeable AMPA receptors are expressed in a rodent model of status epilepticus. Annals of Neurology, 2012, 72, 91-102.	5.3	127
67	Mâ€ŧype potassium channels modulate Schaffer collateral–CA1 glutamatergic synaptic transmission. Journal of Physiology, 2012, 590, 3953-3964.	2.9	40
68	GABAA Receptor Plasticity during Status Epilepticus. , 2012, , 545-554.		11
69	Galanin Receptors Modulate Seizures. Epilepsy Currents, 2011, 11, 125-127.	0.8	5
70	Homeostatic Strengthening of Inhibitory Synapses Is Mediated by the Accumulation of GABA _A Receptors. Journal of Neuroscience, 2011, 31, 17701-17712.	3.6	77
71	Engineering the synchronization of neuron action potentials using global time-delayed feedback stimulation. Physical Review E, 2011, 84, 066202.	2.1	27
72	A Mouse Monoclonal Antibody Against the γ2 Subunit of GABA _A Receptors. Hybridoma, 2011, 30, 537-542.	0.4	6

#	Article	IF	CITATIONS
73	TASK Channel Deletion Reduces Sensitivity to Local Anesthetic-induced Seizures. Anesthesiology, 2011, 115, 1003-1011.	2.5	18
74	Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiology of Disease, 2010, 40, 490-501.	4.4	56
75	Endogenous neurosteroid synthesis modulates seizure frequency. Annals of Neurology, 2010, 67, 689-693.	5.3	55
76	GABAA receptor plasticity in status epilepticus. Epilepsia, 2010, 51, 48-48.	5.1	12
77	Homeostatic Regulation of Synaptic Excitability: Tonic GABA _A Receptor Currents Replace <i>I</i> _h in Cortical Pyramidal Neurons of HCN1 Knock-Out Mice. Journal of Neuroscience, 2010, 30, 2611-2622.	3.6	59
78	Central Cholinesterase Inhibition Enhances Glutamatergic Synaptic Transmission. Journal of Neurophysiology, 2010, 103, 1748-1757.	1.8	42
79	Drug Resistance in Epilepsy and Status Epilepticus. , 2010, , 61-81.		0
80	Nitric oxide alters GABAergic synaptic transmission in cultured hippocampal neurons. Brain Research, 2009, 1297, 23-31.	2.2	35
81	The impact of diazepam's discovery on the treatment and understanding of status epilepticus. Epilepsia, 2009, 50, 2011-2018.	5.1	60
82	Slow intracellular accumulation of GABAA receptor \hat{l}' subunit is modulated by brain-derived neurotrophic factor. Neuroscience, 2009, 164, 507-519.	2.3	40
83	A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia, 2008, 49, 248-255.	5.1	127
84	Is Epilepsy a Disease of Synaptic Transmission?. Epilepsy Currents, 2008, 8, 139-141.	0.8	7
85	Subunit-Specific Trafficking of GABA _A Receptors during Status Epilepticus. Journal of Neuroscience, 2008, 28, 2527-2538.	3.6	275
86	An Unusual Application of Epilepsy Surgery. , 2008, , 191-193.		0
87	Diminished Neurosteroid Sensitivity of Synaptic Inhibition and Altered Location of the α4 Subunit of GABA _A Receptors in an Animal Model of Epilepsy. Journal of Neuroscience, 2007, 27, 12641-12650.	3.6	74
88	Hydroxyamide Analogs of Propofol Exhibit State-Dependent Block of Sodium Channels in Hippocampal Neurons: Implications for Anticonvulsant Activity. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 828-836.	2.5	19
89	Alterations in GABA _A Receptor Mediated Inhibition in Adjacent Dorsal Midline Thalamic Nuclei in a Rat Model of Chronic Limbic Epilepsy. Journal of Neurophysiology, 2007, 98, 2501-2508.	1.8	12
90	Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. Journal of Comparative Neurology, 2007, 500, 876-893.	1.6	111

#	Article	IF	CITATIONS
91	GABA _A Receptor Internalization during Seizures. Epilepsia, 2007, 48, 109-113.	5.1	68
92	Impact of receptor changes on treatment of status epilepticus. Epilepsia, 2007, 48, 14-15.	5.1	117
93	Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Molecular and Cellular Neurosciences, 2006, 31, 481-492.	2.2	97
94	Disordered Migration of Interneurons within Focal Cortical Dysplasia. Epilepsy Currents, 2006, 6, 96-98.	0.8	0
95	Is Mesial Temporal Sclerosis a Necessary Component of Temporal Lobe Epilepsy?. Epilepsy Currents, 2006, 6, 208-209.	0.8	3
96	Development of Î ³ -aminobutyric acidergic synapses in cultured hippocampal neurons. Journal of Comparative Neurology, 2006, 495, 497-510.	1.6	44
97	GABAergic Synaptic Inhibition Is Reduced before Seizure Onset in a Genetic Model of Cortical Malformation. Journal of Neuroscience, 2006, 26, 10756-10767.	3.6	42
98	High-Affinity, Slowly Desensitizing GABAA Receptors Mediate Tonic Inhibition in Hippocampal Dentate Granule Cells. Molecular Pharmacology, 2006, 69, 564-575.	2.3	83
99	Is the Tyrosine Kinase B Receptor a Target for Preventing Epilepsy?. Epilepsy Currents, 2005, 5, 7-10.	0.8	Ο
100	Status Epilepticus Increases the Intracellular Accumulation of GABAA Receptors. Journal of Neuroscience, 2005, 25, 5511-5520.	3.6	280
101	Cultured Hippocampal Pyramidal Neurons Express Two Kinds of GABAA Receptors. Molecular Pharmacology, 2005, 67, 775-788.	2.3	76
102	Homeostatic Plasticity Hypothesis and Mechanisms of Neocortical Epilepsies. Epilepsy Currents, 2005, 5, 133-135.	0.8	2
103	Role of Brain-derived Neurotrophic Factor in Catamenial Epilepsy. Epilepsy Currents, 2004, 4, 154-155.	0.8	0
104	Distribution of α1, α4, γ2, and δÂsubunits of GABAA receptors in hippocampal granule cells. Brain Research, 2004, 1029, 207-216.	2.2	112
105	Synaptic and extrasynaptic localization of brain-derived neurotrophic factor and the tyrosine kinase B receptor in cultured hippocampal neurons. Journal of Comparative Neurology, 2004, 478, 405-417.	1.6	48
106	A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Research, 2004, 59, 43-50.	1.6	55
107	Characterization of the convulsant action of pregnenolone sulfate. Neuropharmacology, 2004, 46, 856-864.	4.1	37
108	Factors Underlying Bursting Behavior in a Network of Cultured Hippocampal Neurons Exposed to Zero Magnesium. Journal of Neurophysiology, 2004, 91, 946-957.	1.8	76

#	Article	IF	CITATIONS
109	Responsiveness of Status Epilepticus to Treatment with Diazepan Decreases Rapidly as Seizure Duration Increases. Epilepsy Currents, 2003, 3, 11-12.	0.8	16
110	Role of Neuronal Loss in the Pathogenesis of Recurrent Spontaneous Seizures. Epilepsy Currents, 2003, 3, 166-167.	0.8	15
111	Dormant Basket Cell Hypothesis Revisited … Again. Epilepsy Currents, 2003, 3, 223-224.	0.8	1
112	Design, Synthesis, and Evaluation of Analogues of 3,3,3-Trifluoro-2-Hydroxy-2-Phenyl-Propionamide as Orally Available General Anesthetics. Journal of Medicinal Chemistry, 2003, 46, 2494-2501.	6.4	34
113	Role of GABAA receptor-mediated inhibition in the pathogenesis of generalized seizures. Experimental Neurology, 2003, 184, 1-2.	4.1	2
114	Increased neurosteroid sensitivity of hippocampal gabaa receptors during postnatal development. Neuroscience, 2003, 118, 655-666.	2.3	36
115	A Presynaptic Action of the Neurosteroid Pregnenolone Sulfate on GABAergic Synaptic Transmission. Molecular Pharmacology, 2003, 64, 857-864.	2.3	87
116	Role of Neurosteroids in Epilepsy. Frontiers in Neuroscience, 2003, , .	0.0	0
117	Prehospital Treatment of Status Epilepticus with Benzodiazepines Is Effective and Safe. Epilepsy Currents, 2002, 2, 121-124.	0.8	20
118	Sodium Channel Mutations in GEFS+ Produce Persistent Inward Current. Epilepsy Currents, 2002, 2, 149-150.	0.8	2
119	A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience, 2001, 102, 307-317.	2.3	214
120	Photothrombotic brain infarction results in seizure activity in aging Fischer 344 and Sprague Dawley rats. Epilepsy Research, 2001, 47, 189-203.	1.6	82
121	Diminished allopregnanolone enhancement of GABA A receptor currents in a rat model of chronic temporal lobe epilepsy. Journal of Physiology, 2001, 537, 453-465.	2.9	62
122	PRIMARY CEREBRAL MUCORMYCOSIS: A CASE REPORT AND LITERATURE REVIEW. Neurologist, 2000, 6, 232-237.	0.7	2
123	Ketamine controls prolonged status epilepticus. Epilepsy Research, 2000, 42, 117-122.	1.6	195
124	Hippocampal Neurons Express GABAA Receptor Insensitive to Diazepam in Hyperexcitable Conditions. Epilepsia, 2000, 41, S86-S89.	5.1	50
125	Physiological Properties of GABAA Receptors From Acutely Dissociated Rat Dentate Granule Cells. Journal of Neurophysiology, 1999, 81, 2464-2471.	1.8	19
126	Functional GABAA Receptor Heterogeneity of Acutely Dissociated Hippocampal CA1 Pyramidal Cells. Journal of Neurophysiology, 1999, 81, 1575-1586.	1.8	38

#	Article	IF	CITATIONS
127	Value of Inpatient Diagnostic CCTV-EEG Monitoring in the Elderly. Epilepsia, 1999, 40, 1100-1102.	5.1	44
128	Acute Cellular Alterations in the Hippocampus After Status Epilepticus. Epilepsia, 1999, 40, s9-s20.	5.1	54
129	Status epilepticus in epileptogenesis. Current Opinion in Neurology, 1999, 12, 191-195.	3.6	26
130	Status epilepticus and seizures. Current Opinion in Critical Care, 1998, 4, 83-88.	3.2	1
131	Rapid Seizure-Induced Reduction of Benzodiazepine and Zn ²⁺ Sensitivity of Hippocampal Dentate Granule Cell GABA _A Receptors. Journal of Neuroscience, 1997, 17, 7532-7540.	3.6	388
132	Cyclic AMP-dependent protein kinase enhances hippocampal dentate granule cell GABAA receptor currents. Journal of Neurophysiology, 1996, 76, 2626-2634.	1.8	49
133	Psychogenic Elaboration of Simple Partial Seizures. Epilepsia, 1995, 36, 1126-1130.	5.1	27
134	Experimental status epilepticus alters ?-aminobutyric acid type A receptor function in CA1 pyramidal neurons. Annals of Neurology, 1995, 38, 893-900.	5.3	118
135	NMDA receptor activation mediates the loss of GABAergic inhibition induced by recurrent seizures. Epilepsy Research, 1990, 5, 103-111.	1.6	69
136	Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Research, 1990, 6, 110-118.	1.6	162
137	Loss of inhibition precedes delayed spontaneous seizures in the hippocampus after tetanic electrical stimulation. Journal of Neurophysiology, 1989, 61, 427-434.	1.8	70
138	Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. Journal of Neurophysiology, 1989, 61, 417-426.	1.8	138
139	Evidence for a chronic loss of inhibition in the hippocampus after kindling: electrophysiological studies. Epilepsy Research, 1989, 4, 90-99.	1.6	70
140	Evidence for a chronic loss of inhibition in the hippocampus after kindling: biochemical studies. Epilepsy Research, 1989, 4, 100-108.	1.6	32
141	Reduction of paired pulse inhibition in the CA1 region of the hippocampus by pilocarpine in naive and in amygdala-kindled rats. Experimental Neurology, 1989, 104, 264-271.	4.1	19