Jaideep Kapur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514877/publications.pdf

Version: 2024-02-01

141 papers 6,255 citations

43 h-index 76900 74 g-index

142 all docs

 $\begin{array}{c} 142 \\ \\ \text{docs citations} \end{array}$

times ranked

142

5053 citing authors

#	Article	IF	CITATIONS
1	Rapid Seizure-Induced Reduction of Benzodiazepine and Zn ²⁺ Sensitivity of Hippocampal Dentate Granule Cell GABA _A Receptors. Journal of Neuroscience, 1997, 17, 7532-7540.	3.6	388
2	Randomized Trial of Three Anticonvulsant Medications for Status Epilepticus. New England Journal of Medicine, 2019, 381, 2103-2113.	27.0	342
3	Status Epilepticus Increases the Intracellular Accumulation of GABAA Receptors. Journal of Neuroscience, 2005, 25, 5511-5520.	3.6	280
4	Subunit-Specific Trafficking of GABA _A Receptors during Status Epilepticus. Journal of Neuroscience, 2008, 28, 2527-2538.	3.6	275
5	A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience, 2001, 102, 307-317.	2.3	214
6	Ketamine controls prolonged status epilepticus. Epilepsy Research, 2000, 42, 117-122.	1.6	195
7	Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Research, 1990, 6, 110-118.	1.6	162
8	Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial. Lancet, The, 2020, 395, 1217-1224.	13.7	143
9	Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. Journal of Neurophysiology, 1989, 61, 417-426.	1.8	138
10	A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia, 2008, 49, 248-255.	5.1	127
11	Calciumâ€permeable AMPA receptors are expressed in a rodent model of status epilepticus. Annals of Neurology, 2012, 72, 91-102.	5.3	127
12	Experimental status epilepticus alters ?-aminobutyric acid type A receptor function in CA1 pyramidal neurons. Annals of Neurology, 1995, 38, 893-900.	5.3	118
13	Impact of receptor changes on treatment of status epilepticus. Epilepsia, 2007, 48, 14-15.	5.1	117
14	Distribution of $\hat{l}\pm 1$, $\hat{l}\pm 4$, $\hat{l}^3 2$, and $\hat{l}'\hat{A}$ subunits of GABAA receptors in hippocampal granule cells. Brain Research, 2004, 1029, 207-216.	2.2	112
15	Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. Journal of Comparative Neurology, 2007, 500, 876-893.	1.6	111
16	Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Molecular and Cellular Neurosciences, 2006, 31, 481-492.	2.2	97
17	The Established Status Epilepticus Trial 2013. Epilepsia, 2013, 54, 89-92.	5.1	91
18	A Presynaptic Action of the Neurosteroid Pregnenolone Sulfate on GABAergic Synaptic Transmission. Molecular Pharmacology, 2003, 64, 857-864.	2.3	87

#	Article	IF	CITATIONS
19	Issues related to development of antiepileptogenic therapies. Epilepsia, 2013, 54, 35-43.	5.1	86
20	High-Affinity, Slowly Desensitizing GABAA Receptors Mediate Tonic Inhibition in Hippocampal Dentate Granule Cells. Molecular Pharmacology, 2006, 69, 564-575.	2.3	83
21	Photothrombotic brain infarction results in seizure activity in aging Fischer 344 and Sprague Dawley rats. Epilepsy Research, 2001, 47, 189-203.	1.6	82
22	Homeostatic Strengthening of Inhibitory Synapses Is Mediated by the Accumulation of GABA _A Receptors. Journal of Neuroscience, 2011, 31, 17701-17712.	3.6	77
23	Factors Underlying Bursting Behavior in a Network of Cultured Hippocampal Neurons Exposed to Zero Magnesium. Journal of Neurophysiology, 2004, 91, 946-957.	1.8	76
24	Cultured Hippocampal Pyramidal Neurons Express Two Kinds of GABAA Receptors. Molecular Pharmacology, 2005, 67, 775-788.	2.3	76
25	Diminished Neurosteroid Sensitivity of Synaptic Inhibition and Altered Location of the α4 Subunit of GABA _A Receptors in an Animal Model of Epilepsy. Journal of Neuroscience, 2007, 27, 12641-12650.	3.6	74
26	Loss of inhibition precedes delayed spontaneous seizures in the hippocampus after tetanic electrical stimulation. Journal of Neurophysiology, 1989, 61, 427-434.	1.8	70
27	Evidence for a chronic loss of inhibition in the hippocampus after kindling: electrophysiological studies. Epilepsy Research, 1989, 4, 90-99.	1.6	70
28	NMDA receptor activation mediates the loss of GABAergic inhibition induced by recurrent seizures. Epilepsy Research, 1990, 5, 103-111.	1.6	69
29	GABA _A Receptor Internalization during Seizures. Epilepsia, 2007, 48, 109-113.	5.1	68
30	Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Research, 2012, 101, 268-276.	1.6	67
31	Diminished allopregnanolone enhancement of GABA A receptor currents in a rat model of chronic temporal lobe epilepsy. Journal of Physiology, 2001, 537, 453-465.	2.9	62
32	The impact of diazepam's discovery on the treatment and understanding of status epilepticus. Epilepsia, 2009, 50, 2011-2018.	5.1	60
33	Homeostatic Regulation of Synaptic Excitability: Tonic GABA _A Receptor Currents Replace <i>I</i> _h in Cortical Pyramidal Neurons of HCN1 Knock-Out Mice. Journal of Neuroscience, 2010, 30, 2611-2622.	3.6	59
34	Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiology of Disease, 2010, 40, 490-501.	4.4	56
35	A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Research, 2004, 59, 43-50.	1.6	55
36	Endogenous neurosteroid synthesis modulates seizure frequency. Annals of Neurology, 2010, 67, 689-693.	5. 3	55

#	Article	IF	CITATIONS
37	Acute Cellular Alterations in the Hippocampus After Status Epilepticus. Epilepsia, 1999, 40, s9-s20.	5.1	54
38	Hippocampal Neurons Express GABAA Receptor Insensitive to Diazepam in Hyperexcitable Conditions. Epilepsia, 2000, 41, S86-S89.	5.1	50
39	Cyclic AMP-dependent protein kinase enhances hippocampal dentate granule cell GABAA receptor currents. Journal of Neurophysiology, 1996, 76, 2626-2634.	1.8	49
40	Synaptic and extrasynaptic localization of brain-derived neurotrophic factor and the tyrosine kinase B receptor in cultured hippocampal neurons. Journal of Comparative Neurology, 2004, 478, 405-417.	1.6	48
41	Ca _V 3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy. Genes and Development, 2015, 29, 1535-1551.	5.9	48
42	Receptor trafficking hypothesis revisited: Plasticity of AMPA receptors during established status epilepticus. Epilepsia, 2013, 54, 14-16.	5.1	45
43	Enhanced AMPA receptor-mediated neurotransmission on CA1 pyramidal neurons during status epilepticus. Neurobiology of Disease, 2017, 103, 45-53.	4.4	45
44	Value of Inpatient Diagnostic CCTV-EEG Monitoring in the Elderly. Epilepsia, 1999, 40, 1100-1102.	5.1	44
45	Development of \hat{l}^3 -aminobutyric acidergic synapses in cultured hippocampal neurons. Journal of Comparative Neurology, 2006, 495, 497-510.	1.6	44
46	GABAergic Synaptic Inhibition Is Reduced before Seizure Onset in a Genetic Model of Cortical Malformation. Journal of Neuroscience, 2006, 26, 10756-10767.	3.6	42
47	Central Cholinesterase Inhibition Enhances Glutamatergic Synaptic Transmission. Journal of Neurophysiology, 2010, 103, 1748-1757.	1.8	42
48	Slow intracellular accumulation of GABAA receptor $\hat{\Gamma}$ subunit is modulated by brain-derived neurotrophic factor. Neuroscience, 2009, 164, 507-519.	2.3	40
49	Mâ€ŧype potassium channels modulate Schaffer collateral–CA1 glutamatergic synaptic transmission. Journal of Physiology, 2012, 590, 3953-3964.	2.9	40
50	Underdosing of Benzodiazepines in Patients With Status Epilepticus Enrolled in Established Status Epilepticus Treatment Trial. Academic Emergency Medicine, 2019, 26, 940-943.	1.8	39
51	Patterns of benzodiazepine underdosing in the Established Status Epilepticus Treatment Trial. Epilepsia, 2021, 62, 795-806.	5.1	39
52	Functional GABAA Receptor Heterogeneity of Acutely Dissociated Hippocampal CA1 Pyramidal Cells. Journal of Neurophysiology, 1999, 81, 1575-1586.	1.8	38
53	Neurosteroid regulation of GABAA receptors: A role in catamenial epilepsy. Brain Research, 2019, 1703, 31-40.	2.2	38
54	Characterization of the convulsant action of pregnenolone sulfate. Neuropharmacology, 2004, 46, 856-864.	4.1	37

#	Article	IF	CITATIONS
55	Increased neurosteroid sensitivity of hippocampal gabaa receptors during postnatal development. Neuroscience, 2003, 118, 655-666.	2.3	36
56	A novel therapeutic approach for treatment of catamenial epilepsy. Neurobiology of Disease, 2018, 111, 127-137.	4.4	36
57	Nitric oxide alters GABAergic synaptic transmission in cultured hippocampal neurons. Brain Research, 2009, 1297, 23-31.	2.2	35
58	Design, Synthesis, and Evaluation of Analogues of 3,3,3-Trifluoro-2-Hydroxy-2-Phenyl-Propionamide as Orally Available General Anesthetics. Journal of Medicinal Chemistry, 2003, 46, 2494-2501.	6.4	34
59	Evidence for a chronic loss of inhibition in the hippocampus after kindling: biochemical studies. Epilepsy Research, 1989, 4, 100-108.	1.6	32
60	Role of <scp>NMDA</scp> receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open, 2018, 3, 165-168.	2.4	31
61	A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia, 2014, 55, 203-213.	5.1	30
62	GABAergic transmission in temporal lobe epilepsy: The role of neurosteroids. Experimental Neurology, 2013, 244, 36-42.	4.1	29
63	Impact of transient acute hypoxia on the developing mouse EEG. Neurobiology of Disease, 2014, 68, 37-46.	4.4	29
64	Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiology of Disease, 2014, 62, 44-55.	4.4	28
65	Increased excitability and excitatory synaptic transmission during in vitro ischemia in the neonatal mouse hippocampus. Neuroscience, 2015, 310, 279-289.	2.3	28
66	Neocortical injury–induced status epilepticus. Epilepsia, 2020, 61, 2811-2824.	5.1	28
67	Psychogenic Elaboration of Simple Partial Seizures. Epilepsia, 1995, 36, 1126-1130.	5.1	27
68	Engineering the synchronization of neuron action potentials using global time-delayed feedback stimulation. Physical Review E, 2011, 84, 066202.	2.1	27
69	Status epilepticus in epileptogenesis. Current Opinion in Neurology, 1999, 12, 191-195.	3.6	26
70	Parallel pathways of seizure generalization. Brain, 2019, 142, 2336-2351.	7.6	25
71	Somatostatin type-2 receptor activation inhibits glutamate release and prevents status epilepticus. Neurobiology of Disease, 2013, 54, 94-104.	4.4	24
72	Progesterone modulates neuronal excitability bidirectionally. Neuroscience Letters, 2021, 744, 135619.	2.1	24

#	Article	IF	CITATIONS
7 3	αâ€Aminoâ€3â€Hydroxyâ€5â€Methylâ€4â€Isoxazolepropionic Acid Receptor Plasticity Sustains Severe, Fatal Sta Epilepticus. Annals of Neurology, 2020, 87, 84-96.	itus 5.3	22
74	Mechanisms of status epilepticus: <i>î±</i> â€Aminoâ€3â€hydroxyâ€5â€methylâ€4â€isoxazolepropionic acid rece hypothesis. Epilepsia, 2018, 59, 78-81.	eptor 5.1	21
7 5	Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain, 2021, 144, 2074-2091.	7.6	21
76	Prehospital Treatment of Status Epilepticus with Benzodiazepines Is Effective and Safe. Epilepsy Currents, 2002, 2, 121-124.	0.8	20
77	Neurobiology of organophosphate-induced seizures. Epilepsy and Behavior, 2019, 101, 106426.	1.7	20
78	Circuits generating secondarily generalized seizures. Epilepsy and Behavior, 2019, 101, 106474.	1.7	20
79	Reduction of paired pulse inhibition in the CA1 region of the hippocampus by pilocarpine in naive and in amygdala-kindled rats. Experimental Neurology, 1989, 104, 264-271.	4.1	19
80	Physiological Properties of GABAA Receptors From Acutely Dissociated Rat Dentate Granule Cells. Journal of Neurophysiology, 1999, 81, 2464-2471.	1.8	19
81	Hydroxyamide Analogs of Propofol Exhibit State-Dependent Block of Sodium Channels in Hippocampal Neurons: Implications for Anticonvulsant Activity. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 828-836.	2.5	19
82	Neurosteroidâ€sensitive Î'â€GABA _A receptors: A role in epileptogenesis?. Epilepsia, 2017, 58, 494-504.	5.1	19
83	Electroencephalography and behavior patterns during experimental status epilepticus. Epilepsia, 2018, 59, 369-380.	5.1	19
84	TASK Channel Deletion Reduces Sensitivity to Local Anesthetic-induced Seizures. Anesthesiology, 2011, 115, 1003-1011.	2.5	18
85	<i><math>N>-Methyl-D-Aspartic Acid Receptor Activation Downregulates Expression of <i <math="">N> Subunit-Containing GABA_AReceptors in Cultured Hippocampal Neurons. Molecular Pharmacology, 2013, 84, 1-11.</i></math></i>	2.3	17
86	Neuronal Circuit Activity during Neonatal Hypoxic–Ischemic Seizures in Mice. Annals of Neurology, 2019, 86, 927-938.	5.3	17
87	Responsiveness of Status Epilepticus to Treatment with Diazepan Decreases Rapidly as Seizure Duration Increases. Epilepsy Currents, 2003, 3, 11-12.	0.8	16
88	Role of Neuronal Loss in the Pathogenesis of Recurrent Spontaneous Seizures. Epilepsy Currents, 2003, 3, 166-167.	0.8	15
89	Flupirtine and diazepam combination terminates established status epilepticus: results in three rodent models. Annals of Clinical and Translational Neurology, 2017, 4, 888-896.	3.7	15
90	Progesterone receptor activation regulates seizure susceptibility. Annals of Clinical and Translational Neurology, 2019, 6, 1302-1310.	3.7	15

#	Article	IF	CITATIONS
91	Mechanism of seizure-induced retrograde amnesia. Progress in Neurobiology, 2021, 200, 101984.	5.7	15
92	WONOEP appraisal: Network concept from an imaging perspective. Epilepsia, 2019, 60, 1293-1305.	5.1	14
93	Connectivity and Neuronal Synchrony during Seizures. Journal of Neuroscience, 2021, 41, 7623-7635.	3.6	14
94	Alterations in GABA _A Receptor Mediated Inhibition in Adjacent Dorsal Midline Thalamic Nuclei in a Rat Model of Chronic Limbic Epilepsy. Journal of Neurophysiology, 2007, 98, 2501-2508.	1.8	12
95	GABAA receptor plasticity in status epilepticus. Epilepsia, 2010, 51, 48-48.	5.1	12
96	Distinct Roles of Rodent Thalamus and Corpus Callosum in Seizure Generalization. Annals of Neurology, 2022, 91, 682-696.	5.3	12
97	Difluoroboron \hat{l}^2 -diketonate polylactic acid oxygen nanosensors for intracellular neuronal imaging. Scientific Reports, 2021, 11, 1076.	3.3	11
98	GABAA Receptor Plasticity during Status Epilepticus. , 2012, , 545-554.		11
99	Reduced neurosteroid potentiation of GABA A receptors in epilepsy and depolarized hippocampal neurons. Annals of Clinical and Translational Neurology, 2020, 7, 527-542.	3.7	10
100	Neuronal circuits sustaining neocortical-injury-induced status epilepticus. Neurobiology of Disease, 2022, 165, 105633.	4.4	10
101	Synchronization of action potentials during low-magnesium-induced bursting. Journal of Neurophysiology, 2015, 113, 2461-2470.	1.8	9
102	Lessons from the Established Status Epilepticus Treatment Trial. Epilepsy and Behavior, 2019, 101, 106296.	1.7	8
103	The association of patient weight and dose of fosphenytoin, levetiracetam, and valproic acid with treatment success in status epilepticus. Epilepsia, 2020, 61, e66-e70.	5.1	8
104	Is Epilepsy a Disease of Synaptic Transmission?. Epilepsy Currents, 2008, 8, 139-141.	0.8	7
105	GABAA receptor membrane insertion rates are specified by their subunit composition. Molecular and Cellular Neurosciences, 2013, 56, 201-211.	2.2	7
106	Limbic progesterone receptor activity enhances neuronal excitability and seizures. Epilepsia, 2021, 62, 1946-1959.	5.1	7
107	The SAMUKeppra study in prehospital status epilepticus: lessons for future study. Annals of Translational Medicine, 2016, 4, 468-468.	1.7	7
108	A Mouse Monoclonal Antibody Against the Î ³ 2 Subunit of GABA _A Receptors. Hybridoma, 2011, 30, 537-542.	0.4	6

#	Article	IF	Citations
109	Early Neurologic Recovery, Practice Pattern Variation, and the Risk of Endotracheal Intubation Following Established Status Epilepticus. Neurology, 2021, 96, e2372-e2386.	1.1	6
110	Anticonvulsant dopamine type 2 receptor agonist activates inhibitory parvalbumin interneurons. Epilepsia, 2021, 62, e147-e152.	5.1	6
111	Galanin Receptors Modulate Seizures. Epilepsy Currents, 2011, 11, 125-127.	0.8	5
112	Characterization of kindled VGAT re mice as a new animal model of temporal lobe epilepsy. Epilepsia, 2020, 61, 2277-2288.	5.1	4
113	Continuous Video Electroencephalogram during Hypoxia-Ischemia in Neonatal Mice. Journal of Visualized Experiments, 2020, , .	0.3	4
114	Is Mesial Temporal Sclerosis a Necessary Component of Temporal Lobe Epilepsy?. Epilepsy Currents, 2006, 6, 208-209.	0.8	3
115	Are myotonia and epilepsy linked by a chloride channel?. Neurology, 2013, 80, 1074-1075.	1.1	3
116	Early Exposure of Fosphenytoin, Levetiracetam, and Valproic Acid After Highâ€Dose Intravenous Administration in Young Children With Benzodiazepineâ€Refractory Status Epilepticus. Journal of Clinical Pharmacology, 2021, 61, 763-768.	2.0	3
117	Focal impaired awareness seizures in a rodent model: A functional anatomy. Epilepsia Open, 2022, 7, 110-123.	2.4	3
118	Treatment of Toxin-Related Status Epilepticus With Levetiracetam, Fosphenytoin, or Valproate in Patients Enrolled in the Established Status Epilepticus Treatment Trial. Annals of Emergency Medicine, 2022, 80, 194-202.	0.6	3
119	PRIMARY CEREBRAL MUCORMYCOSIS: A CASE REPORT AND LITERATURE REVIEW. Neurologist, 2000, 6, 232-237.	0.7	2
120	Sodium Channel Mutations in GEFS+ Produce Persistent Inward Current. Epilepsy Currents, 2002, 2, 149-150.	0.8	2
121	Role of GABAA receptor-mediated inhibition in the pathogenesis of generalized seizures. Experimental Neurology, 2003, 184, 1-2.	4.1	2
122	Homeostatic Plasticity Hypothesis and Mechanisms of Neocortical Epilepsies. Epilepsy Currents, 2005, 5, 133-135.	0.8	2
123	Emerging Role of Pannexins in Seizures and Status Epilepticus. Epilepsy Currents, 2012, 12, 113-114.	0.8	2
124	Gaining perspective on SUDEP. Neurology, 2017, 88, 1598-1599.	1.1	2
125	Whole brain reconstruction from multilayered sections of a mouse model of status epilepticus. , 2017, , .		2
126	7 FLIM-FRET microscopy. , 2018, , 141-162.		2

#	Article	IF	Citations
127	Status epilepticus and seizures. Current Opinion in Critical Care, 1998, 4, 83-88.	3.2	1
128	Dormant Basket Cell Hypothesis Revisited … Again. Epilepsy Currents, 2003, 3, 223-224.	0.8	1
129	Neurosteroid Regulation of Seizures: Role of GABAA Receptor Plasticity. Methods in Pharmacology and Toxicology, 2016, , 127-146.	0.2	1
130	Isocitrate dehydrogenase mutations. Neurology, 2017, 88, 1782-1783.	1.1	1
131	A pharmacokinetic simulation study to assess the performance of a sparse blood sampling approach to quantify early drug exposure. Clinical and Translational Science, 2021, 14, 1444-1451.	3.1	1
132	Improvement in Symptomatic Gastroparesis With Increased Vagal Nerve Stimulation. Neurology: Clinical Practice, 2021, 11, e18-e19.	1.6	1
133	Efficient Learning of Transform-Domain LMS Filter Using Graph Laplacian. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP, 1-13.	11.3	1
134	Role of Brain-derived Neurotrophic Factor in Catamenial Epilepsy. Epilepsy Currents, 2004, 4, 154-155.	0.8	0
135	Is the Tyrosine Kinase B Receptor a Target for Preventing Epilepsy?. Epilepsy Currents, 2005, 5, 7-10.	0.8	0
136	Disordered Migration of Interneurons within Focal Cortical Dysplasia. Epilepsy Currents, 2006, 6, 96-98.	0.8	0
137	Synergistic effect of sleep depth and seizures correlates with postictal heart rate. Epilepsia, 2021, 62, e65-e69.	5.1	0
138	Role of Neurosteroids in Epilepsy. Frontiers in Neuroscience, 2003, , .	0.0	0
139	An Unusual Application of Epilepsy Surgery. , 2008, , 191-193.		0
140	Drug Resistance in Epilepsy and Status Epilepticus. , 2010, , 61-81.		0
141	Construction of Local Field Potential Microelectrodes for in vivo Recordings from Multiple Brain Structures Simultaneously. Journal of Visualized Experiments, 2022, , .	0.3	0