## Kevin R Nash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514414/publications.pdf Version: 2024-02-01



KEVIN P NACH

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Accumulation of C-terminal cleaved tau is distinctly associated with cognitive deficits, synaptic plasticity impairment, and neurodegeneration in aged mice. GeroScience, 2022, 44, 173-194.                 | 4.6 | 6         |
| 2  | CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. , 2022, 231, 107989.                                                                                                        |     | 53        |
| 3  | Recovery of Angelman syndrome rat deficits with UBE3A protein supplementation. Molecular and<br>Cellular Neurosciences, 2022, 120, 103724.                                                                   | 2.2 | 1         |
| 4  | Improving Gene Therapy for Angelman Syndrome with Secreted Human UBE3A. Neurotherapeutics, 2022, 19, 1329-1339.                                                                                              | 4.4 | 3         |
| 5  | Reelin central fragment supplementation improves cognitive deficits in a mouse model of Fragile X<br>Syndrome. Experimental Neurology, 2022, 357, 114170.                                                    | 4.1 | 1         |
| 6  | Identification of <scp>UBE3A</scp> Protein in <scp>CSF</scp> and Extracellular Space of the<br>Hippocampus Suggest a Potential Novel Function in Synaptic Plasticity. Autism Research, 2021, 14,<br>645-655. | 3.8 | 5         |
| 7  | Aberrant AZIN2 and polyamine metabolism precipitates tau neuropathology. Journal of Clinical Investigation, 2021, 131, .                                                                                     | 8.2 | 20        |
| 8  | Early Developmental EEG and Seizure Phenotypes in a Full Gene Deletion of Ubiquitin Protein Ligase<br>E3A Rat Model of Angelman Syndrome. ENeuro, 2021, 8, ENEURO.0345-20.2020.                              | 1.9 | 20        |
| 9  | Toward Development of Neuron Specific Transduction After Systemic Delivery of Viral Vectors.<br>Frontiers in Neurology, 2021, 12, 685802.                                                                    | 2.4 | 13        |
| 10 | STK35 Gene Therapy Attenuates Endothelial Dysfunction and Improves Cardiac Function in Diabetes.<br>Frontiers in Cardiovascular Medicine, 2021, 8, 798091.                                                   | 2.4 | 2         |
| 11 | Overexpression of human wtTDP-43 causes impairment in hippocampal plasticity and behavioral deficits in CAMKII-tTa transgenic mouse model. Molecular and Cellular Neurosciences, 2020, 102, 103418.          | 2.2 | 7         |
| 12 | TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote<br>neurodegeneration in a low-grade systemic inflammation mouse model. Journal of<br>Neuroinflammation, 2020, 17, 283.   | 7.2 | 32        |
| 13 | T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an<br>α-synuclein rat model of Parkinson's disease. Journal of Neuroinflammation, 2020, 17, 242.            | 7.2 | 54        |
| 14 | Two forms of CX3CL1 display differential activity and rescue cognitive deficits in CX3CL1 knockout mice. Journal of Neuroinflammation, 2020, 17, 157.                                                        | 7.2 | 33        |
| 15 | Generation of a Novel Rat Model of Angelman Syndrome with a Complete <i>Ube3a</i> Gene Deletion.<br>Autism Research, 2020, 13, 397-409.                                                                      | 3.8 | 28        |
| 16 | CCL2 Overexpression in the Brain Promotes Glial Activation and Accelerates Tau Pathology in a Mouse<br>Model of Tauopathy. Frontiers in Immunology, 2020, 11, 997.                                           | 4.8 | 54        |
| 17 | Spermidine/spermine-N1-acetyltransferase ablation impacts tauopathy-induced polyamine stress response. Alzheimer's Research and Therapy, 2019, 11, 58.                                                       | 6.2 | 29        |
| 18 | Neuroinflammation and fractalkine signaling in Alzheimer's disease. Journal of Neuroinflammation, 2019, 16, 30.                                                                                              | 7.2 | 93        |

Kevin R Nash

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Automatic stereology of mean nuclear size of neurons using an active contour framework. Journal of Chemical Neuroanatomy, 2019, 96, 110-115.                                                                                | 2.1 | 3         |
| 20 | CNS-Wide over Expression of Fractalkine Improves Cognitive Functioning in a Tauopathy Model.<br>Journal of NeuroImmune Pharmacology, 2019, 14, 312-325.                                                                     | 4.1 | 25        |
| 21 | Astaxanthin is neuroprotective in an aged mouse model of Parkinson's disease. Oncotarget, 2018, 9,<br>10388-10401.                                                                                                          | 1.8 | 45        |
| 22 | Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. GeroScience, 2017, 39, 19-32.                                                        | 4.6 | 138       |
| 23 | Immunomodulators as Therapeutic Agents in Mitigating the Progression of Parkinson's Disease. Brain<br>Sciences, 2016, 6, 41.                                                                                                | 2.3 | 18        |
| 24 | Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS<br>tracking. Journal of Immunological Methods, 2016, 432, 51-56.                                                                 | 1.4 | 6         |
| 25 | Small-Scale Recombinant Adeno-Associated Virus Purification. Methods in Molecular Biology, 2016, 1382, 95-106.                                                                                                              | 0.9 | 16        |
| 26 | Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain. Methods<br>in Molecular Biology, 2016, 1382, 285-295.                                                                              | 0.9 | 6         |
| 27 | P3-048: Arginine metabolism and higher-order polyamines impact tau aggregation, microtubule assembly, and autophagy in models of tauopathies. , 2015, 11, P636-P637.                                                        |     | 3         |
| 28 | P3-007: Characterization of full length and c-terminal truncated tau pathological progression with age in wild type mice. , 2015, 11, P621-P622.                                                                            |     | 0         |
| 29 | Sustained Arginase 1 Expression Modulates Pathological Tau Deposits in a Mouse Model of Tauopathy.<br>Journal of Neuroscience, 2015, 35, 14842-14860.                                                                       | 3.6 | 37        |
| 30 | Fractalkine Over Expression Suppresses α-Synuclein-mediated Neurodegeneration. Molecular Therapy,<br>2015, 23, 17-23.                                                                                                       | 8.2 | 68        |
| 31 | Anti-Human α-Synuclein N-Terminal Peptide Antibody Protects against Dopaminergic Cell Death and<br>Ameliorates Behavioral Deficits in an AAV-α-Synuclein Rat Model of Parkinson's Disease. PLoS ONE, 2015,<br>10, e0116841. | 2.5 | 68        |
| 32 | Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimer's Research and Therapy, 2014, 6, 12.                                                            | 6.2 | 105       |
| 33 | Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. Journal of Neuroinflammation, 2013, 10, 86.                                                                                      | 7.2 | 78        |
| 34 | Aging enhances classical activation but mitigates alternative activation in the central nervous system.<br>Neurobiology of Aging, 2013, 34, 1610-1620.                                                                      | 3.1 | 105       |
| 35 | Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiology of Aging, 2013, 34, 1540-1548.                                                                                              | 3.1 | 89        |
| 36 | Intracranial Injection of AAV Expressing NEP but Not IDE Reduces Amyloid Pathology in APP+PS1<br>Transgenic Mice. PLoS ONE, 2013, 8, e59626.                                                                                | 2.5 | 36        |

Kevin R Nash

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Soluble Isoform of CX3CL1 Is Necessary for Neuroprotection in a Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2012, 32, 14592-14601.                                                                   | 3.6 | 105       |
| 38 | Chronological Age Impacts Immunotherapy and Monocyte Uptake Independent of Amyloid Load. Journal of NeuroImmune Pharmacology, 2012, 7, 202-214.                                                                           | 4.1 | 9         |
| 39 | Adeno-Associated Virus-Mediated Rescue of the Cognitive Defects in a Mouse Model for Angelman<br>Syndrome. PLoS ONE, 2011, 6, e27221.                                                                                     | 2.5 | 92        |
| 40 | Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. Journal of Neuroscience Methods, 2010, 194, 144-153. | 2.5 | 61        |
| 41 | Nurr1 regulates RET expression in dopamine neurons of adult rat midbrain. Journal of<br>Neurochemistry, 2010, 114, 1158-1167.                                                                                             | 3.9 | 43        |
| 42 | Trafficking CD11b-Positive Blood Cells Deliver Therapeutic Genes to the Brain of Amyloid-Depositing Transgenic Mice. Journal of Neuroscience, 2010, 30, 9651-9658.                                                        | 3.6 | 116       |
| 43 | In Vivo RNAi-Mediated α-Synuclein Silencing Induces Nigrostriatal Degeneration. Molecular Therapy, 2010, 18, 1450-1457.                                                                                                   | 8.2 | 173       |
| 44 | The Effect of DNA-Dependent Protein Kinase on Adeno-Associated Virus Replication. PLoS ONE, 2010, 5, e15073.                                                                                                              | 2.5 | 23        |
| 45 | Identification of Cellular Proteins That Interact with the Adeno-Associated Virus Rep Protein. Journal of Virology, 2009, 83, 454-469.                                                                                    | 3.4 | 56        |
| 46 | Heparin binding induces conformational changes in Adeno-associated virus serotype 2. Journal of<br>Structural Biology, 2009, 165, 146-156.                                                                                | 2.8 | 98        |
| 47 | Complete In Vitro Reconstitution of Adeno-Associated Virus DNA Replication Requires the<br>Minichromosome Maintenance Complex Proteins. Journal of Virology, 2008, 82, 1458-1464.                                         | 3.4 | 52        |
| 48 | Adeno-associated Viral (AAV) Serotype 5 Vector Mediated Gene Delivery of Endothelin-converting<br>Enzyme Reduces Al² Deposits in APP + PS1 Transgenic Mice. Molecular Therapy, 2008, 16, 1580-1586.                       | 8.2 | 64        |
| 49 | Purification of Host Cell Enzymes Involved in Adeno-Associated Virus DNA Replication. Journal of Virology, 2007, 81, 5777-5787.                                                                                           | 3.4 | 32        |
| 50 | Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders.<br>Molecular Therapy, 2006, 13, 463-483.                                                                                | 8.2 | 118       |
| 51 | Recombinant Adeno-Associated Viral Vectors in the Nervous System. Human Gene Therapy, 2005, 16, 781-791.                                                                                                                  | 2.7 | 97        |
| 52 | Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice. Molecular Therapy, 2005, 12, 618-633.                        | 8.2 | 251       |
| 53 | Successful Production of Pseudotyped rAAV Vectors Using a Modified Baculovirus Expression System.<br>Molecular Therapy, 2005, 12, 1217-1225.                                                                              | 8.2 | 116       |
| 54 | Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases.<br>Archives of Biochemistry and Biophysics, 2004, 424, 154-162.                                                           | 3.0 | 54        |

| #  | Article                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Recombinant Human and Mouse Purple Acid Phosphatases: Expression and Characterization. Archives of Biochemistry and Biophysics, 1997, 345, 230-236. | 3.0 | 47        |