## Liang-Chi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514353/publications.pdf Version: 2024-02-01



<u> LIANC-CHI 7ΗΛΝ</u>

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics<br>analysis. Wear, 1997, 211, 44-53.                                                                                | 3.1  | 237       |
| 2  | Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribology International, 1998, 31, 425-433.                                                                 | 5.9  | 197       |
| 3  | Ultrasonic vibration-assisted machining: principle, design and application. Advances in Manufacturing, 2015, 3, 173-192.                                                                                         | 6.1  | 124       |
| 4  | On the Mechanics and Physics in the Nano-Indentation of Silicon Monocrystals JSME International<br>Journal Series A-Solid Mechanics and Material Engineering, 1999, 42, 546-559.                                 | 0.4  | 120       |
| 5  | A finite element model for the orthogonal cutting of fiber-reinforced composite materials. Journal of<br>Materials Processing Technology, 2001, 113, 373-377.                                                    | 6.3  | 101       |
| 6  | Study of nanoindentation mechanical response of nanocrystalline structures using molecular<br>dynamics simulations. Applied Surface Science, 2016, 364, 190-200.                                                 | 6.1  | 94        |
| 7  | Mechanics of fibre deformation and fracture in vibration-assisted cutting of unidirectional<br>fibre-reinforced polymer composites. International Journal of Machine Tools and Manufacture, 2016,<br>103, 40-52. | 13.4 | 86        |
| 8  | Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Applied Surface Science, 2017, 416, 470-481.                                                   | 6.1  | 81        |
| 9  | Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC. Acta Materialia, 2020, 182, 60-67.                                                                                              | 7.9  | 73        |
| 10 | Machining of particulate-reinforced metal matrix composites: An investigation into the chip<br>formation and subsurface damage. Journal of Materials Processing Technology, 2019, 274, 116315.                   | 6.3  | 57        |
| 11 | Ultrasonic vibration-assisted metal forming: Constitutive modelling of acoustoplasticity and applications. Journal of Materials Processing Technology, 2019, 265, 122-129.                                       | 6.3  | 55        |
| 12 | Revealing the deformation mechanisms of 6H-silicon carbide under nano-cutting. Computational<br>Materials Science, 2017, 137, 282-288.                                                                           | 3.0  | 52        |
| 13 | Understanding the friction and wear of KDP crystals by nanoscratching. Wear, 2015, 332-333, 900-906.                                                                                                             | 3.1  | 37        |
| 14 | Nano-machining of materials: understanding the process through molecular dynamics simulation.<br>Advances in Manufacturing, 2017, 5, 20-34.                                                                      | 6.1  | 37        |
| 15 | An adaptive three-dimensional finite element algorithm for the orthogonal cutting of composite materials. Journal of Materials Processing Technology, 2001, 113, 368-372.                                        | 6.3  | 35        |
| 16 | Effect of repeated nano-indentations on the deformation in monocrystalline silicon. Journal of<br>Materials Science Letters, 2000, 19, 439-442.                                                                  | 0.5  | 34        |
| 17 | Effect of tool vibration on chip formation and cutting forces in the machining of fiber-reinforced polymer composites. Machining Science and Technology, 2016, 20, 312-329.                                      | 2.5  | 32        |
| 18 | Assessing microstructure changes in potassium dihydrogen phosphate crystals induced by mechanical stresses. Scripta Materialia, 2016, 113, 48-50.                                                                | 5.2  | 32        |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A novel multi-scale statistical characterization of interface pressure and friction in metal strip rolling. International Journal of Mechanical Sciences, 2014, 89, 391-402.               | 6.7  | 31        |
| 20 | A unified method for characterizing multiple lubrication regimes involving plastic deformation of surface asperities. Tribology International, 2016, 100, 70-83.                           | 5.9  | 29        |
| 21 | Effect of structural anisotropy on the dislocation nucleation and evolution in 6H SiC under nanoindentation. Ceramics International, 2019, 45, 14229-14237.                                | 4.8  | 24        |
| 22 | A methodology for fuzzy modeling of engineering systems. Fuzzy Sets and Systems, 2001, 118, 181-197.                                                                                       | 2.7  | 23        |
| 23 | Interaction potential function for the deformation analysis of potassium dihydrogen phosphate using molecular dynamics simulation. Computational Materials Science, 2021, 187, 110122.     | 3.0  | 23        |
| 24 | Three-dimensional characterization and modeling of diamond electroplated grinding wheels.<br>International Journal of Mechanical Sciences, 2018, 144, 553-563.                             | 6.7  | 22        |
| 25 | Revealing Structural Relaxation of Optical Class Through the Temperature Dependence of Young's Modulus. Journal of the American Ceramic Society, 2014, 97, 3475-3482.                      | 3.8  | 21        |
| 26 | A micromechanics analysis of the material removal mechanisms in the cutting of ceramic particle reinforced metal matrix composites. Machining Science and Technology, 2018, 22, 638-651.   | 2.5  | 21        |
| 27 | A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips. Wear, 2019, 426-427, 1246-1264.                                       | 3.1  | 20        |
| 28 | Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence.<br>International Journal of Advanced Manufacturing Technology, 2021, 112, 853-865. | 3.0  | 20        |
| 29 | A simple approach for analysing the surface texture transfer in cold rolling of metal strips.<br>International Journal of Advanced Manufacturing Technology, 2018, 95, 597-608.            | 3.0  | 19        |
| 30 | Effect of abrasive grain position patterns on the deformation of 6H-silicon carbide subjected to nano-grinding. International Journal of Mechanical Sciences, 2021, 211, 106779.           | 6.7  | 19        |
| 31 | Effect of Anisotropy of Potassium Dihydrogen Phosphate Crystals on Its Deformation Mechanisms<br>Subjected to Nanoindentation. ACS Applied Materials & Interfaces, 2021, 13, 41351-41360.  | 8.0  | 18        |
| 32 | Numerical insights into the effect of ITZ and aggregate strength on concrete properties. Theoretical and Applied Fracture Mechanics, 2022, 120, 103415.                                    | 4.7  | 18        |
| 33 | A multi-field analysis of hydrodynamic lubrication in high speed rolling of metal strips. International<br>Journal of Mechanical Sciences, 2018, 142-143, 468-479.                         | 6.7  | 17        |
| 34 | Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide. Journal of<br>Materials Science and Technology, 2021, 90, 58-65.                                  | 10.7 | 17        |
| 35 | A numerical and experimental study on the interface friction of ball-on-disc test under high temperature. Wear, 2017, 376-377, 433-442.                                                    | 3.1  | 16        |
| 36 | On the Ultra-Precision Fabrication of Damage-Free Optical KDP Components: Mechanisms and Problems. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 283-297.              | 12.3 | 16        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | An investigation on the nano-abrasion wear mechanisms of KDP crystals. Wear, 2021, 476, 203692.                                                                                                                                             | 3.1  | 16        |
| 38 | Critical loading conditions of amorphization, phase transformation, and dilation cracking in 6Hâ€silicon carbide. Journal of the American Ceramic Society, 2018, 101, 3585-3596.                                                            | 3.8  | 15        |
| 39 | Theoretical modelling of brittle-to-ductile transition load of KDP crystals on (001) plane during nanoindentation and nanoscratch tests. Journal of Materials Research and Technology, 2020, 9, 14142-14157.                                | 5.8  | 15        |
| 40 | Effect of the elastic deformation of rolls on the surface texture transfer in skin-pass rolling.<br>International Journal of Mechanical Sciences, 2021, 198, 106358.                                                                        | 6.7  | 15        |
| 41 | Surface texture transfer in skin-pass rolling with the effect of roll surface wear. Wear, 2021, 476, 203764.                                                                                                                                | 3.1  | 15        |
| 42 | Ultrasonic vibration–assisted incremental sheet metal forming. International Journal of Advanced<br>Manufacturing Technology, 2021, 114, 3311-3323.                                                                                         | 3.0  | 14        |
| 43 | Microstructure-based three-dimensional characterization of chip formation and surface generation<br>in the machining of particulate-reinforced metal matrix composites. International Journal of Extreme<br>Manufacturing, 2020, 2, 045103. | 12.7 | 14        |
| 44 | Effects of grain size and protrusion height on the surface integrity generation in the nanogrinding of 6H-SiC. Tribology International, 2022, 171, 107563.                                                                                  | 5.9  | 14        |
| 45 | Understanding the formation mechanism of subsurface damage in potassium dihydrogen phosphate crystals during ultra-precision fly cutting. Advances in Manufacturing, 2019, 7, 270-277.                                                      | 6.1  | 13        |
| 46 | Stress-induced phase and structural changes in KDP crystals. Computational Materials Science, 2015, 109, 359-366.                                                                                                                           | 3.0  | 11        |
| 47 | Investigation into the room temperature creep-deformation of potassium dihydrogen phosphate crystals using nanoindentation. Advances in Manufacturing, 2018, 6, 376-383.                                                                    | 6.1  | 11        |
| 48 | Characterization of mechanical properties and failure of potassium dihydrogen phosphate under mechanical stressing. Ceramics International, 2021, 47, 15875-15882.                                                                          | 4.8  | 11        |
| 49 | On the numerical modelling of composite machining. Composites Part B: Engineering, 2022, 241, 110023.                                                                                                                                       | 12.0 | 10        |
| 50 | Characterization and criteria of phase transformations and lattice slipping in potassium dihydrogen phosphate crystals. Journal of the American Ceramic Society, 2021, 104, 5955-5965.                                                      | 3.8  | 9         |
| 51 | Tribological performance of silicone oil based Al2O3 nano lubricant for an Mg alloy subjected to sliding at elevated temperatures. Tribology International, 2022, 175, 107779.                                                              | 5.9  | 9         |
| 52 | Mechanisms of the Complex Thermo-Mechanical Behavior of Polymer Glass Across a Wide Range of<br>Temperature Variations. Polymers, 2018, 10, 1153.                                                                                           | 4.5  | 8         |
| 53 | HD-lubricated high-speed small reduction rolling of hard steel strips with elastically deformable work rolls. Tribology International, 2022, 165, 107295.                                                                                   | 5.9  | 8         |
| 54 | Debris effect on the surface wear and damage evolution of counterpart materials subjected to contact sliding. Advances in Manufacturing, 2022, 10, 72-86.                                                                                   | 6.1  | 8         |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The role of material model in the finite element simulation of high-speed machining of Ti6Al4V.<br>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering<br>Science, 2016, 230, 2959-2967. | 2.1 | 7         |
| 56 | Elastic modulus evolution of rocks under heating–cooling cycles. Scientific Reports, 2020, 10, 13835.                                                                                                                                  | 3.3 | 7         |
| 57 | An Investigation into the Texture Transfer in the Process of Lubricated Skin Pass Rolling. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .                                                    | 2.2 | 7         |
| 58 | Influence of Tool and Workpiece Properties on the Wear of the Counterparts in Contact Sliding.<br>Journal of Tribology, 2022, 144, .                                                                                                   | 1.9 | 7         |
| 59 | A new discrete element model for rock-like materials. Computers and Structures, 2022, 261-262, 106730.                                                                                                                                 | 4.4 | 7         |
| 60 | A multiscale soft-contact modelling method for rough surfaces in contact with coupled slipping/sliding and rolling. Tribology International, 2022, 173, 107627.                                                                        | 5.9 | 7         |
| 61 | Characterization of interface stresses and lubrication of rough elastic surfaces under ball-on-disc rolling. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 1552-1573.   | 1.8 | 6         |
| 62 | On the Constitutive Models for Ultra-High Strain Rate Deformation of Metals. International Journal of Automotive Technology, 2019, 20, 31-37.                                                                                          | 1.4 | 6         |
| 63 | Elastic-plastic-brittle transitions of potassium dihydrogen phosphate crystals: characterization by nanoindentation. Advances in Manufacturing, 2020, 8, 447-456.                                                                      | 6.1 | 6         |
| 64 | Effect of ultra-precision fly-cutting on the surface integrity of potassium dihydrogen phosphate crystals. Optical Materials Express, 2020, 10, 971.                                                                                   | 3.0 | 6         |
| 65 | Effects of sliding speed and lubrication on the tribological behaviour of stainless steel. International<br>Journal of Advanced Manufacturing Technology, 2018, 94, 341-350.                                                           | 3.0 | 5         |
| 66 | Fuzzy modelling of surface scratching in contact sliding. IOP Conference Series: Materials Science and Engineering, 2020, 967, 012022.                                                                                                 | 0.6 | 5         |
| 67 | Fracture mechanisms of intact rock-like materials under compression. Computers and Geotechnics, 2022, 148, 104845.                                                                                                                     | 4.7 | 5         |
| 68 | A note on the applicability of a constitutive model withÂacoustoplasticity to high strain rate<br>deformation induced by high frequency impacts. International Journal of Impact Engineering, 2021, 157,<br>103977.                    | 5.0 | 4         |
| 69 | Multiscale Interface Stress Characterisation in Cold Rolling. Metals and Materials International, 2021, 27, 1997-2013.                                                                                                                 | 3.4 | 4         |
| 70 | Evaluation of critical wear transition loads of MMCs by rule based fuzzy modelling. Tribology<br>Letters, 1996, 2, 89.                                                                                                                 | 2.6 | 3         |
| 71 | Material removal mechanisms and characteristics of potassium dihydrogen phosphate crystals under nanoscratching. Advances in Manufacturing, 2021, 9, 558.                                                                              | 6.1 | 3         |
| 72 | Kinematic modeling of surface topography ground by an electroplated diamond wheel. International<br>Journal of Advanced Manufacturing Technology, 2021, 114, 2753-2765.                                                                | 3.0 | 2         |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of repeated nanoindentations on the deformation of potassium dihydrogen phosphate crystals.<br>Ceramics International, 2022, 48, 9595-9601. | 4.8 | 2         |
| 74 | An investigation on the friction, wear and deformation of potassium dihydrogen phosphate. Wear, 2021, 476, 203624.                                 | 3.1 | 1         |
| 75 | Rapid forming of nanowire array on PVDF polymer surfaces at room temperature by ultrasonic<br>loading. Advanced Engineering Materials, 0, , .      | 3.5 | Ο         |