
Diane S W Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651421/publications.pdf Version: 2024-02-01

DIANE S WILIM

#	Article	IF	CITATIONS
1	pH-Degradable Polymers as Impermanent Antimicrobial Agents for Environmental Sustainability. ACS Applied Bio Materials, 2021, 4, 1544-1551.	4.6	6
2	Soft Surface Nanostructure with Semi-Free Polyionic Components for Sustainable Antimicrobial Plastic. International Journal of Molecular Sciences, 2021, 22, 12315.	4.1	5
3	Rational Design of Gram-Specific Antimicrobial Imidazolium Tetramers To Combat MRSA. ACS Biomaterials Science and Engineering, 2020, 6, 5563-5570.	5.2	4
4	pH-Degradable imidazolium oligomers as antimicrobial materials with tuneable loss of activity. Biomaterials Science, 2019, 7, 2317-2325.	5.4	20
5	Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H ₂ O ₂ . Green Chemistry, 2017, 19, 914-918.	9.0	72
6	NHCâ€Ag/Pdâ€Catalyzed Reductive Carboxylation of Terminal Alkynes with CO ₂ and H ₂ : A Combined Experimental and Computational Study for Fineâ€Tuned Selectivity. ChemSusChem, 2017, 10, 836-841.	6.8	26
7	Synergistic Carbon Dioxide Capture and Conversion in Porous Materials. ChemSusChem, 2015, 8, 2606-2608.	6.8	27
8	Copper(<scp>i</scp>)-catalyzed amidation reaction of organoboronic esters and isocyanates. Green Chemistry, 2015, 17, 5140-5143.	9.0	17
9	Direct Amidation of <i>N</i> -Boc- and <i>N</i> -Cbz-Protected Amines via Rhodium-Catalyzed Coupling of Arylboroxines and Carbamates. Organic Letters, 2015, 17, 6054-6057.	4.6	14
10	Synthesis of Cyclic Alkenylsiloxanes by Semihydrogenation: A Stereospecific Route to (<i>Z</i>)â€Alkenyl Polyenes. Chemistry - A European Journal, 2014, 20, 8594-8598.	3.3	7
11	Synthesis of Vinylsilanes. Synthesis, 2012, 44, 983-1010.	2.3	106
12	One-Step Preparation of Functionalized (<i>E</i>)-Vinylsilanes from Aldehydes. Organic Letters, 2011, 13, 4806-4809.	4.6	31
13	Synthesis of a rhodanine-based compound library targeting Bcl-XL and Mcl-1. Pure and Applied Chemistry, 2011, 83, 723-731.	1.9	22
14	Structural Insights into the Design of Small Molecule Inhibitors That Selectively Antagonize Mcl-1. Journal of Medicinal Chemistry, 2010, 53, 2314-2318.	6.4	48