
Igor Levchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Applied Physics Reviews, 2018, 5, .	5.5	242
2	Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nature Communications, 2018, 9, 879.	5.8	182
3	Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Physics of Plasmas, 2020, 27, .	0.7	140
4	Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Applied Physics Letters, 2008, 92, .	1.5	135
5	Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon, 2007, 45, 2022-2030.	5.4	132
6	Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas. Nanoscale, 2010, 2, 2281.	2.8	120
7	From nucleation to nanowires: a single-step process in reactive plasmas. Nanoscale, 2010, 2, 2012.	2.8	114
8	Explore space using swarms of tiny satellites. Nature, 2018, 562, 185-187.	13.7	111
9	Nanostructures of various dimensionalities from plasma and neutral fluxes. Journal Physics D: Applied Physics, 2007, 40, 2308-2319.	1.3	101
10	Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale, 2016, 8, 10511-10527.	2.8	97
11	The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes. Carbon, 2010, 48, 4570-4574.	5.4	93
12	Advanced Materials for Next eneration Spacecraft. Advanced Materials, 2018, 30, e1802201.	11.1	92
13	Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Selfâ€Assembly at the Nanoscale. Advanced Materials, 2018, 30, 1702226.	11.1	91
14	The production of self-organized carbon connections between Ag nanoparticles using atmospheric microplasma synthesis. Carbon, 2009, 47, 344-347.	5.4	78
15	Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymer-network gel processes. Journal of Alloys and Compounds, 2021, 868, 158723.	2.8	78
16	Prospects and physical mechanisms for photonic space propulsion. Nature Photonics, 2018, 12, 649-657.	15.6	77
17	Graphene oxide – Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems. Renewable Energy, 2020, 151, 731-739.	4.3	76
18	Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Applied Physics Reviews, 2017, 4, .	5.5	72

#	Article	IF	CITATIONS
19	Control of core-shell structure and elemental composition of binary quantum dots. Applied Physics Letters, 2007, 90, 193110.	1.5	69
20	Energy efficiency in nanoscale synthesis using nanosecond plasmas. Scientific Reports, 2013, 3, 1221.	1.6	68
21	Crystalline Si nanoparticles below crystallization threshold: Effects of collisional heating in non-thermal atmospheric-pressure microplasmas. Applied Physics Letters, 2014, 104, .	1.5	66
22	Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures. Journal of Applied Physics, 2005, 98, 064304.	1.1	65
23	Low-temperature plasmas in carbon nanostructure synthesis. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	0.6	63
24	Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production. Journal of Colloid and Interface Science, 2019, 556, 376-385.	5.0	63
25	Carbon nanostructures for hard tissue engineering. RSC Advances, 2013, 3, 11058.	1.7	62
26	Highly Efficient Silicon Nanoarray Solar Cells by a Singleâ€Step Plasmaâ€Based Process. Advanced Energy Materials, 2011, 1, 373-376.	10.2	54
27	Deterministic shape control in plasma-aided nanotip assembly. Journal of Applied Physics, 2006, 100, 036104.	1.1	53
28	Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation. Applied Physics Reviews, 2018, 5, 021103.	5.5	53
29	MoS ₂ -based nanostructures: synthesis and applications in medicine. Journal Physics D: Applied Physics, 2019, 52, 183001.	1.3	53
30	Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. Journal of Applied Physics, 2008, 103, .	1.1	51
31	Hopes and concerns for astronomy of satellite constellations. Nature Astronomy, 2020, 4, 1012-1014.	4.2	51
32	Plasma-driven self-organization of Ni nanodot arrays on Si(100). Applied Physics Letters, 2008, 93, 183102.	1.5	50
33	Real-time monitoring of nucleation-growth cycle of carbon nanoparticles in acetylene plasmas. Journal of Applied Physics, 2011, 109, .	1.1	50
34	Self-organized nanoarrays: Plasma-related controls. Pure and Applied Chemistry, 2008, 80, 1909-1918.	0.9	49
35	From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring. Materials Horizons, 2018, 5, 765-798.	6.4	49
36	Self-organized carbon connections between catalyst particles on a silicon surface exposed to atmospheric-pressure Ar+CH4 microplasmas. Carbon, 2009, 47, 2379-2390.	5.4	46

#	Article	IF	CITATIONS
37	Silicon on silicon: self-organized nanotip arrays formed in reactive Ar+H ₂ plasmas. Nanotechnology, 2010, 21, 025605.	1.3	46
38	Growth kinetics of carbon nanowall-like structures in low-temperature plasmas. Physics of Plasmas, 2007, 14, 063502.	0.7	45
39	Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks. Nanoscale, 2011, 3, 3214.	2.8	45
40	Plasma-Enabled Growth of Single-Crystalline SiC/AlSiC Core–Shell Nanowires on Porous Alumina Templates. Crystal Growth and Design, 2012, 12, 2917-2922.	1.4	45
41	Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape. Carbon, 2012, 50, 325-329.	5.4	45
42	Hydrogen in plasma-nanofabrication: Selective control of nanostructure heating and passivation. Applied Physics Letters, 2010, 96, .	1.5	44
43	Mars Colonization: Beyond Getting There. Global Challenges, 2019, 3, 1800062.	1.8	44
44	Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. Materials Horizons, 2021, 8, 3201-3238.	6.4	44
45	Investigation of a steady-state cylindrical magnetron discharge for plasma immersion treatment. Journal of Applied Physics, 2003, 94, 1408-1413.	1.1	43
46	Ion current distribution on a substrate during nanostructure formation. Journal Physics D: Applied Physics, 2004, 37, 1690-1695.	1.3	43
47	Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays. Applied Physics Letters, 2008, 92, 063108.	1.5	43
48	Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. Nanoscale, 2018, 10, 17494-17511.	2.8	43
49	Wearable, Flexible, Disposable Plasma-Reduced Graphene Oxide Stress Sensors for Monitoring Activities in Austere Environments. ACS Applied Materials & Interfaces, 2019, 11, 15122-15132.	4.0	43
50	Control of morphology and nucleation density of iron oxide nanostructures by electric conditions on iron surfaces exposed to reactive oxygen plasmas. Applied Physics Letters, 2009, 94, 211502.	1.5	42
51	In vitro Demonstration of Cancer Inhibiting Properties from Stratified Self-Organized Plasma-Liquid Interface. Scientific Reports, 2017, 7, 12163.	1.6	42
52	Plasma and Polymers: Recent Progress and Trends. Molecules, 2021, 26, 4091.	1.7	42
53	Stable plasma configurations in a cylindrical magnetron discharge. Applied Physics Letters, 2004, 85, 2202-2204.	1.5	41
54	Surface fluxes of Si and C adatoms at initial growth stages of SiC quantum dots. Journal of Applied Physics, 2007, 101, 044306.	1.1	41

#	Article	IF	CITATIONS
55	Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas. Nanoscale, 2016, 8, 17141-17149.	2.8	41
56	Plasma-deposited Ge nanoisland films on Si: is Stranski–Krastanow fragmentation unavoidable?. Journal Physics D: Applied Physics, 2008, 41, 092001.	1.3	40
57	The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Advances, 2015, 5, 5142-5148.	1.7	37
58	Large networks of vertical multi-layer graphenes with morphology-tunable magnetoresistance. Nanoscale, 2013, 5, 9283.	2.8	35
59	Growth of rGO nanostructures via facile wick and oil flame synthesis for environmental remediation. Carbon Letters, 2021, 31, 763.	3.3	34
60	Multifunctional oil-produced reduced graphene oxide – Silver oxide composites with photocatalytic, antioxidant, and antibacterial activities. Journal of Colloid and Interface Science, 2022, 608, 294-305.	5.0	34
61	Formation of vertically oriented graphenes: what are the key drivers of growth?. 2D Materials, 2018, 5, 044002.	2.0	31
62	Carbon saturation of arrays of Ni catalyst nanoparticles of different size and pattern uniformity on a silicon substrate. Nanotechnology, 2008, 19, 335703.	1.3	29
63	Effect of titanium surface topography on plasma deposition of antibacterial polymer coatings. Applied Surface Science, 2020, 521, 146375.	3.1	29
64	Nanoscaled Metamaterial as an Advanced Heat Pump and Cooling Media. Advanced Materials Technologies, 2016, 1, 1600008.	3.0	28
65	Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach. Reviews of Modern Plasma Physics, 2018, 2, 1.	2.2	28
66	Superhydrophobic fluorine-modified cerium-doped mesoporous carbon as an efficient catalytic platform for photo-degradation of organic pollutants. Carbon, 2019, 147, 323-333.	5.4	28
67	Hybrid graphite film–carbon nanotube platform for enzyme immobilization and protection. Carbon, 2013, 65, 287-295.	5.4	25
68	Multipurpose nanoporous alumina–carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma CVD. Carbon, 2014, 78, 627-632.	5.4	24
69	Kinetics of the initial stage of silicon surface oxidation: Deal–Grove or surface nucleation?. Applied Physics Letters, 2009, 95, 021502.	1.5	23
70	Plasmonic Metamaterial Sensor with Ultraâ€High Sensitivity in the Visible Spectral Range. Advanced Optical Materials, 2015, 3, 750-755.	3.6	23
71	Plasma nanofabrication and nanomaterials safety. Journal Physics D: Applied Physics, 2011, 44, 174019.	1.3	22
72	Vertically-aligned graphene flakes on nanoporous templates: morphology, thickness, and defect level control by pre-treatment. Science and Technology of Advanced Materials, 2014, 15, 055009.	2.8	22

#	Article	IF	CITATIONS
73	Ion deposition in a crossed E×B field system with vacuum arc plasma sources. Vacuum, 2003, 72, 335-344.	1.6	21
74	Plasma parameters and discharge characteristics of lab-based krypton-propelled miniaturized Hall thruster. Plasma Sources Science and Technology, 2019, 28, 064003.	1.3	21
75	Tuning and fine morphology control of natural resource-derived vertical graphene. Carbon, 2020, 159, 668-685.	5.4	21
76	NiFe2O4 / rGO nanocomposites produced by soft bubble assembly for energy storage and environmental remediation. Renewable Energy, 2022, 181, 1386-1401.	4.3	20
77	Direct current arc plasma thrusters for space applications: basic physics, design and perspectives. Reviews of Modern Plasma Physics, 2019, 3, 1.	2.2	19
78	Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon. Applied Physics Letters, 2010, 97, 151503.	1.5	18
79	Hierarchical bi-dimensional alumina/palladium nanowire nano-architectures for hydrogen detection, storage and controlled release. International Journal of Hydrogen Energy, 2015, 40, 6165-6172.	3.8	18
80	Plasma-potentiated small molecules—possible alternative to antibiotics?. Nano Futures, 2017, 1, 025002.	1.0	18
81	Fabrication of Nano-Onion-Structured Graphene Films from <i>Citrus sinensis</i> Extract and Their Wetting and Sensing Characteristics. ACS Applied Materials & Interfaces, 2020, 12, 29594-29604.	4.0	18
82	Growth of carbon nanocone arrays on a metal catalyst: The effect of carbon flux ionization. Physics of Plasmas, 2008, 15, .	0.7	16
83	3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply. Nanoscale, 2011, 3, 4848.	2.8	16
84	Plasma enables edge-to-center-oriented graphene nanoarrays on Si nanograss. Applied Physics Letters, 2012, 100, .	1.5	16
85	Plasma-chemical synthesis, structure and photoluminescence properties of hybrid graphene nanoflake–BNCO nanowall systems. Journal of Materials Chemistry C, 2016, 4, 9788-9797.	2.7	16
86	Focusing plasma jets to achieve high current density: Feasibility and opportunities for applications in debris removal and space exploration. Aerospace Science and Technology, 2021, 108, 106343.	2.5	16
87	Ge/Si Quantum Dot Formation From Nonâ€Uniform Cluster Fluxes. Plasma Processes and Polymers, 2007, 4, 638-647.	1.6	15
88	Gold nanoresistors with near-constant resistivity in the cryogenic-to-room temperature range. Journal of Applied Physics, 2011, 110, 023303.	1.1	15
89	Sub-oxide-to-metallic, uniformly-nanoporous crystalline nanowires by plasma oxidation and electron reduction. Chemical Communications, 2012, 48, 11070.	2.2	15
90	Novel biomaterials: plasma-enabled nanostructures and functions. Journal Physics D: Applied Physics, 2016, 49, 273001.	1.3	15

#	Article	IF	CITATIONS
91	3Dâ€Printed Multilayered Reinforced Material System for Gas Supply in CubeSats and Small Satellites. Advanced Engineering Materials, 2019, 21, 1900401.	1.6	15
92	Tuning of magnetization in vertical graphenes by plasma-enabled chemical conversion of organic precursors with different oxygen content. Chemical Communications, 2013, 49, 11635.	2.2	14
93	Plasma-assisted ALD to functionalize PET: towards new generation flexible gadgets. Flexible and Printed Electronics, 2017, 2, 022001.	1.5	14
94	Hydrophilicity and Hydrophobicity Control of Plasmaâ€Treated Surfaces via Fractal Parameters. Advanced Materials Interfaces, 2021, 8, 2100724.	1.9	14
95	Plasma-controlled metal catalyst saturation and the initial stage of carbon nanostructure array growth. Journal of Applied Physics, 2008, 104, .	1.1	13
96	Self-organization in arrays of surface-grown nanoparticles: characterization, control, driving forces. Journal Physics D: Applied Physics, 2011, 44, 174020.	1.3	13
97	Miniaturized Plasma Sources: Can Technological Solutions Help Electric Micropropulsion?. IEEE Transactions on Plasma Science, 2018, 46, 230-238.	0.6	13
98	Hierarchical Doped Gelatin-Derived Carbon Aerogels: Three Levels of Porosity for Advanced Supercapacitors. Nanomaterials, 2020, 10, 1178.	1.9	13
99	Morphological Characterization of Graphene Flake Networks Using Minkowski Functionals. Graphene, 2016, 05, 25-34.	0.3	13
100	lodine powers low-cost engines for satellites. Nature, 2021, 599, 373-374.	13.7	13
101	Templated iâ€₽VD of Metallic Nanodot Arrays. Plasma Processes and Polymers, 2007, 4, 612-620.	1.6	12
102	Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence. Applied Physics Letters, 2010, 97, 163109.	1.5	12
103	Carbon nanoflake-nanoparticle interface: A comparative study on structure and photoluminescent properties of carbon nanoflakes synthesized on nanostructured gold and carbon by hot filament CVD. Carbon, 2017, 124, 391-402.	5.4	12
104	Automated Integrated Robotic Systems for Diagnostics and Test of Electric and Micropropulsion Thrusters. IEEE Transactions on Plasma Science, 2018, 46, 345-353.	0.6	12
105	Ultra-low reflective black silicon photovoltaics by high density inductively coupled plasmas. Solar Energy, 2018, 171, 841-850.	2.9	12
106	Current–voltage characteristics of a substrate in a crossed E×B field system exposed to plasma flux from vacuum arc plasma sources. Surface and Coatings Technology, 2004, 184, 356-360.	2.2	11
107	Self-organized quantum dot arrays: Kinetic mapping of adatom capture. Applied Physics Letters, 2009, 95, 243102.	1.5	11
108	Nanoherding: Plasma-Chemical Synthesis and Electric-Charge-Driven Self Organization of SiO2 Nanodots. Journal of Physical Chemistry Letters, 2013, 4, 681-686.	2.1	11

#	Article	IF	CITATIONS
109	Self-organized graphene-like boron nitride containing nanoflakes on copper by low-temperature N2 + H2 plasma. RSC Advances, 2016, 6, 87607-87615.	1.7	11
110	Plasmonic platform based on nanoporous alumina membranes: order control <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 9565-9577.	5.2	11
111	Functional Nanomaterials from Waste and Lowâ€Value Natural Products: A Technological Approach Level. Advanced Materials Technologies, 2022, 7, .	3.0	11
112	Thermodynamical and plasma-driven kinetic growth of high-aspect-ratio nanostructures: effect of hydrogen termination. Journal Physics D: Applied Physics, 2009, 42, 125207.	1.3	10
113	Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: An ion-assisted self-organization approach. Journal of Applied Physics, 2010, 107, 024313.	1.1	10
114	Sonochemical nanoplungers: crystalline gold nanowires by cavitational extrusion through nanoporous alumina. Journal of Materials Chemistry C, 2013, 1, 1727-1731.	2.7	10
115	Carbon nanotubes on nanoporous alumina: from surface mats to conformal pore filling. Nanoscale Research Letters, 2014, 9, 390.	3.1	10
116	Protein retention on plasma-treated hierarchical nanoscale gold-silver platform. Scientific Reports, 2015, 5, 13379.	1.6	10
117	Hall Thrusters With Permanent Magnets: Current Solutions and Perspectives. IEEE Transactions on Plasma Science, 2018, 46, 239-251.	0.6	10
118	Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag. Ceramics International, 2021, 47, 48-56.	2.3	10
119	Biowaste valorization by conversion to nanokeratin-urea composite fertilizers for sustainable and controllable nutrient release. Carbon Trends, 2021, 5, 100083.	1.4	10
120	Angular distribution of carbon ion flux in a nanotube array during the plasma process by the Monte Carlo technique. Physics of Plasmas, 2007, 14, 113504.	0.7	9
121	Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes. Science and Technology of Advanced Materials, 2014, 15, 045004.	2.8	9
122	Plasma treatment for next-generation nanobiointerfaces. Biointerphases, 2015, 10, 029405.	0.6	9
123	Plasma-deposited hydrogenated amorphous silicon films: multiscale modelling reveals key processes. RSC Advances, 2017, 7, 19189-19196.	1.7	9
124	Inductively and capacitively coupled plasmas at interface: A comparative study towards highly efficient amorphous-crystalline Si solar cells. Applied Surface Science, 2018, 427, 486-493.	3.1	9
125	Size-selected Ni catalyst islands for single-walled carbon nanotube arrays. Journal of Nanoparticle Research, 2008, 10, 249-254.	0.8	8
126	Plasma-Assembled Carbon Nanotubes: Electric Field–Related Effects. Journal of Nanoscience and Nanotechnology, 2008, 8, 6112-6122.	0.9	8

#	Article	IF	CITATIONS
127	Electron transport across magnetic field in low-temperature plasmas: An alternative approach for obtaining evidence of Bohm mechanism. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1140-1143.	0.9	8
128	Disentangling fluxes of energy and matter in plasma-surface interactions: Effect of process parameters. Journal of Applied Physics, 2010, 108, 053302.	1.1	7
129	Plasma control of morpho-dimensional selectivity of hematite nanostructures. Applied Physics Letters, 2012, 100, 243103.	1.5	7
130	Approach to a simplified numerical optimization of low-power Hall thrusters. Vacuum, 2018, 152, 173-183.	1.6	7
131	Miniaturized rotating magnetic field–driven plasma system: proof-of-concept experiments. Plasma Sources Science and Technology, 2021, 30, 065003.	1.3	7
132	Visualization of ion flux neutralization effect on electrical field and atom density distribution in Hall thruster channel. IEEE Transactions on Plasma Science, 2005, 33, 526-527.	0.6	6
133	Lowâ€Temperature Synthesis of Graphene by ICPâ€Assisted Amorphous Carbon Sputtering. ChemistrySelect, 2018, 3, 8779-8785.	0.7	6
134	Plasma meets metamatertials: three ways to advance space micropropulsion systems. Advances in Physics: X, 2021, 6, 1834452.	1.5	6
135	Controlled Deposition of Nanostructured Hierarchical TiO2 Thin Films by Low Pressure Supersonic Plasma Jets. Nanomaterials, 2022, 12, 533.	1.9	6
136	Hierarchical Carbon Nanocone-Silica Metamaterials: Implications for White Light Photoluminescence. ACS Applied Nano Materials, 2022, 5, 4787-4800.	2.4	6
137	Plasma Jet Interaction With a Spherical Target in Magnetic Field. IEEE Transactions on Plasma Science, 2004, 32, 2139-2143.	0.6	5
138	Long, Vertically Aligned Single-Walled Carbon Nanotubes from Plasmas: Morpho-Kinetic and Alignment Controls. Plasma Processes and Polymers, 2014, 11, 798-808.	1.6	5
139	Atmospheric Plasma Jet-Enhanced Anodization and Nanoparticle Synthesis. IEEE Transactions on Plasma Science, 2015, 43, 765-769.	0.6	5
140	Precise Calibration of Propellant Flow and Forces in Specialized Electric Propulsion Test System. IEEE Transactions on Plasma Science, 2018, 46, 338-344.	0.6	5
141	Different Nanostructures From Different Plasmas: Nanoflowers and Nanotrees on Silicon. IEEE Transactions on Plasma Science, 2011, 39, 2796-2797.	0.6	4
142	Current Control in the Magnetron Systems for Nanofabrication: A Comparison. IEEE Transactions on Plasma Science, 2012, 40, 1094-1097.	0.6	4
143	Morphological transformations of BNCO nanomaterials: Role of intermediates. Applied Surface Science, 2018, 442, 682-692.	3.1	4
144	Optimization, Test and Diagnostics of Miniaturized Hall Thrusters. Journal of Visualized Experiments, 2019, , .	0.2	4

#	Article	IF	CITATIONS
145	Decontamination-Induced Modification of Bioactivity in Essential Oil-Based Plasma Polymer Coatings. Molecules, 2021, 26, 7133.	1.7	4
146	Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes. ACS Applied Materials & Interfaces, 2016, 8, 19012-19023.	4.0	3
147	Catalyst-free growth and tailoring morphology of zinc oxide nanostructures by plasma-enhanced deposition at low temperature. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
148	High-Efficiency Inductively Coupled Plasma Source With Dual Antenna Hybrid Scheme. IEEE Transactions on Plasma Science, 2018, 46, 954-961.	0.6	3
149	Development and Calibration of a Variable Range Stand for Testing Space Micropropulsion Thrusters. IEEE Transactions on Plasma Science, 2018, 46, 289-295.	0.6	3
150	Hybrid Carbon-Based Nanostructured Platforms for the Advanced Bioreactors. Journal of Nanoscience and Nanotechnology, 2015, 15, 10074-10090.	0.9	2
151	SIMULATION OF ION FLUX DISTRIBUTION IN CONDUCTIVE AND NONCONDUCTIVE NANOTIP PATTERNS. International Journal of Nanoscience, 2006, 05, 621-626.	0.4	1
152	Sensors: Plasmonic Metamaterial Sensor with Ultraâ€High Sensitivity in the Visible Spectral Range (Advanced Optical Materials 6/2015). Advanced Optical Materials, 2015, 3, 716-716.	3.6	1
153	Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications. Journal of Applied Physics, 2017, 122, 133112.	1.1	1
154	Guest Editorial Special Issue on Micropropulsion and Cubesats. IEEE Transactions on Plasma Science, 2018, 46, 210-213.	0.6	1
155	Materials for Space Technology: Advanced Materials for Nextâ€Generation Spacecraft (Adv. Mater.) Tj ETQq1 1 C).784314 r 11.1	gBT /Overlo
156	A Hybrid Plasma Generation Triggered by a Shunting Arc Discharge Using a Positively Biased Electrode. , 2006, , .		0
157	Simulation and Visualization of Self-Assembled Nanodevice Networks Synthesized via Plasma–Surface Interaction. IEEE Transactions on Plasma Science, 2008, 36, 866-867.	0.6	0
158	Back Cover: Plasma Process. Polym. 8â^•2014. Plasma Processes and Polymers, 2014, 11, 810-810.	1.6	0
159	Metamaterials: Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Selfâ€Assembly at the Nanoscale (Adv. Mater. 2/2018). Advanced Materials, 2018, 30, 1870009.	11.1	0
160	3Dâ€Printed Multilayered Reinforced Material System for Gas Supply in CubeSats and Small Satellites. Advanced Engineering Materials, 2019, 21, 1970036.	1.6	0
161	Advanced Concepts and Architectures for Plasma-Enabled Material Processing. Synthesis Lectures on Emerging Engineering Technologies, 2020, 5, 1-90.	0.2	0