Leonardo Lo Presti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651414/publications.pdf

Version: 2024-02-01

102 papers

2,139 citations

257450 24 h-index 276875 41 g-index

106 all docs

106 docs citations

106 times ranked 2593 citing authors

#	Article	IF	CITATIONS
1	Revealing Nonâ€covalent Interactions in Molecular Crystals through Their Experimental Electron Densities. Chemistry - A European Journal, 2012, 18, 15523-15536.	3.3	173
2	Non-covalent interaction via the reduced density gradient: Independent atom model vs experimental multipolar electron densities. Computational and Theoretical Chemistry, 2012, 998, 148-163.	2.5	164
3	A Close Look at the Structure of the TiO ₂ -APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2017, 121, 430-440.	3.1	123
4	About the Nitrogen Location in Nanocrystalline N-Doped TiO ₂ : Combined DFT and EXAFS Approach. Journal of Physical Chemistry C, 2012, 116, 1764-1771.	3.1	74
5	Theoretical Study of Chiral Carboxylic Acids. Structural and Energetic Aspects of Crystalline and Liquid States. Crystal Growth and Design, 2015, 15, 3792-3803.	3.0	64
6	Energetics of non-covalent interactions from electron and energy density distributions. Computational and Theoretical Chemistry, 2015, 1053, 53-59.	2.5	64
7	Building Blocks of Crystal Engineering: A Large-Database Study of the Intermolecular Approach between C–H Donor Groups and O, N, Cl, or F Acceptors in Organic Crystals. Crystal Growth and Design, 2016, 16, 2952-2962.	3.0	57
8	Revealing Electron Delocalization through the Source Function. Journal of Physical Chemistry A, 2011, 115, 12864-12878.	2.5	51
9	<i>NCImilano</i> : an electron-density-based code for the study of noncovalent interactions. Journal of Applied Crystallography, 2013, 46, 1513-1517.	4.5	50
10	Unraveling the Cooperative Mechanism of Visible-Light Absorption in Bulk N,Nb Codoped TiO ₂ Powders of Nanomaterials. Journal of Physical Chemistry C, 2014, 118, 24152-24164.	3.1	47
11	On the Interplay between CH···O and OH···O Interactions in Determining Crystal Packing and Molecular Conformation: An Experimental and Theoretical Charge Density Study of the Fungal Secondary Metabolite Austdiol (C12H12O5). Journal of Physical Chemistry B, 2006, 110, 6405-6414.	2.6	44
12	Facts and Factors in the Formation and Stability of Binary Crystals. Crystal Growth and Design, 2016, 16, 6095-6104.	3.0	43
13	Development of Rhodesain Inhibitors with a 3â€Bromoisoxazoline Warhead. ChemMedChem, 2013, 8, 2070-2076.	3.2	37
14	Progress in the Understanding of Drug-Receptor Interactions, Part 1: Experimental Charge-Density Study of an Angiotensin II Receptor Antagonist (C30H30N6O3S) atT=17 K. Chemistry - A European Journal, 2005, 11, 4621-4634.	3.3	36
15	Impregnation versus Bulk Synthesis: How the Synthetic Route Affects the Photocatalytic Efficiency of Nb/Ta:N Codoped TiO ₂ Nanomaterials. Journal of Physical Chemistry C, 2015, 119, 24104-24115.	3.1	36
16	Role of the Nitrogen Source in Determining Structure and Morphology of N-Doped Nanocrystalline TiO2. Journal of Physical Chemistry C, 2014, 118, 4797-4807.	3.1	33
17	Highly diastereoselective entry into chiral spirooxindole-based 4-methyleneazetidines via formal [2+2] annulation reaction. Chemical Communications, 2016, 52, 11575-11578.	4.1	31
18	Intramolecular Aminoazidation of Unactivated Terminal Alkenes by Palladium-Catalyzed Reactions with Hydrogen Peroxide as the Oxidant. Organic Letters, 2020, 22, 1402-1406.	4.6	31

#	Article	IF	CITATIONS
19	Two-component organic crystals without hydrogen bonding: structure and intermolecular interactions in bimolecular stacking. CrystEngComm, 2017, 19, 2413-2423.	2.6	30
20	Synthesis and Biological Evaluation of CTP Synthetase Inhibitors as Potential Agents for the Treatment of African Trypanosomiasis. ChemMedChem, 2012, 7, 1623-1634.	3.2	29
21	On the significance of weak hydrogen bonds in crystal packing: a large databank comparison of polymorphic structures. CrystEngComm, 2018, 20, 5976-5989.	2.6	29
22	Asymmetric Modular Synthesis of a Semirigid Dipeptide Mimetic by Cascade Cycloaddition/Ring Rearrangement and Borohydride Reduction. Journal of Organic Chemistry, 2014, 79, 3094-3102.	3.2	26
23	Using the Source Function descriptor to dampen the multipole model bias in charge density studies from X-ray structure factors refinements. Chemical Physics Letters, 2009, 476, 308-316.	2.6	25
24	Atomistic Explanation for Interlayer Charge Transfer in Metal–Semiconductor Nanocomposites: The Case of Silver and Anatase. Journal of Physical Chemistry Letters, 2017, 8, 5372-5377.	4.6	25
25	4-(1,2-diarylbut-1-en-1-yl)isobutyranilide derivatives as inhibitors of topoisomerase II. European Journal of Medicinal Chemistry, 2016, 118, 79-89.	5.5	24
26	Source Function applied to experimental densities reveals subtle electron-delocalization effects and appraises their transferability properties in crystals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 180-193.	1.1	24
27	Structure–Activity Relationships of Hexahydrocyclopenta[<i>>c</i>)]quinoline Derivatives as Allosteric Inhibitors of CDK2 and EGFR. ChemMedChem, 2018, 13, 2627-2634.	3.2	23
28	Competing Câ•O···Câ•O, C–H···O, Cl···O, and Cl···Cl Interactions Governing the Structural Phase of 2,6-Dichloro-p-benzoquinone atTc= 122.6 K. Crystal Growth and Design, 2013, 13, 4571-4582.	Transition 3.0	22
29	Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines. ACS Combinatorial Science, 2018, 20, 98-105.	3.8	22
30	Probing an Allosteric Pocket of CDK2 with Small Molecules. ChemMedChem, 2017, 12, 33-41.	3.2	21
31	UV absorbing zwitterionic pyridinium-tetrazolate: exceptional transparency/optical nonlinearity trade-off. Chemical Communications, 2011, 47, 292-294.	4.1	20
32	Second Generation Nitrogen Doped Titania Nanoparticles: A Comprehensive Electronic and Microstructural Picture. Chinese Journal of Chemistry, 2014, 32, 1195-1213.	4.9	20
33	Model peptides containing the 3-sulfanyl-norbornene amino acid, a conformationally constrained cysteine analogue effective inducer of $3 < sub > 10 < / sub > -helix$ secondary structures. RSC Advances, 2015, 5, 32643-32656.	3.6	20
34	Insights on spin polarization through the spin density source function. Chemical Science, 2015, 6, 3845-3852.	7.4	20
35	One step access to oxindole-based \hat{l}^2 -lactams through Ugi four-center three-component reaction. RSC Advances, 2018, 8, 34903-34910.	3.6	20
36	Spin Density Topology. Molecules, 2020, 25, 3537.	3.8	20

#	Article	IF	Citations
37	Role of Pr on the Semiconductor Properties of Nanotitania. An Experimental and First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 23083-23093.	3.1	19
38	Isothiazoles. Part 13: Synthesis of sulfamic esters, [1,2]thiazete S,S-dioxides, benzo[e][1,2]thiazine S,S-dioxides or triazoles by reaction of isothiazole dioxides with sodium azide. Tetrahedron, 2002, 58, 5173-5178.	1.9	18
39	On the role of data quality in experimental charge-density studies. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, 365-370.	0.3	18
40	Progress in the Understanding of the Key Pharmacophoric Features of the Antimalarial Drug Dihydroartemisinin: An Experimental and Theoretical Charge Density Study. Chemistry - A European Journal, 2013, 19, 3490-3503.	3.3	18
41	xmlns:mml="http://www.w3.org 1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mn>5.0</mml:mn></mml:mrow></mml:mrow </mml:msub>cobaltite. Physical</mml:math 	3.2	17
42	Rationalizing the Lacking of Inversion Symmetry in a Noncentrosymmetric Polar Racemate: An Experimental and Theoretical Study. Crystal Growth and Design, 2014, 14, 5822-5833.	3.0	17
43	Intermolecular Recognition of the Antimalarial Drug Chloroquine: A Quantum Theory of Atoms in Molecules–Density Functional Theory Investigation of the Hydrated Dihydrogen Phosphate Salt from the 103 K X-ray Structure. Crystal Growth and Design, 2016, 16, 6043-6054.	3.0	17
44	Molecular dynamics simulation of organic crystals: introducing the <i>CLP-dyncry</i> environment. Journal of Applied Crystallography, 2019, 52, 1253-1263.	4.5	17
45	Mining the Cambridge Database for theoretical chemistry. Mi-LJC: a new set of Lennard-Jones–Coulomb atom–atom potentials for the computer simulation of organic condensed matter. CrystEngComm, 2020, 22, 7350-7360.	2.6	17
46	Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior. Physical Review B, 2013, 88,	3.2	16
47	Rationalizing the Effect of Halogenation on the Molecular Structure of Simple Cyclobutene Derivatives by Topological Real-Space Analysis of Their Electron Density. Journal of Physical Chemistry A, 2011, 115, 12695-12707.	2.5	15
48	Insights on spin delocalization and spin polarization mechanisms in crystals of azido copper(II) dinuclear complexes through the electron spin density Source Function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 565-583.	1.1	14
49	Direct measurement and modeling of spontaneous charge migration across anatase–brookite nanoheterojunctions. Journal of Materials Chemistry A, 2021, 9, 7782-7790.	10.3	14
50	Experimental and theoretical charge density distribution of the colossal magnetoresistive transition metal sulfide FeCr2S4. Journal of Chemical Physics, 2008, 128, 044710.	3.0	13
51	Effect of Methoxy Substituents on the Structural and Electronic Properties of Fluorinated Cyclobutenes: A Study of Hexafluorocyclobutene and Its Vinyl Methoxy Derivatives by XRD and Periodic DFT Calculations. Journal of Physical Chemistry A, 2009, 113, 3186-3196.	2.5	13
52	Conformational polymorphism in a Schiff-base macrocyclic organic ligand: an experimental and theoretical study. Acta Crystallographica Section B: Structural Science, 2010, 66, 527-543.	1.8	13
53	Synthesis of novel chiral \hat{l} "2-isoxazoline derivatives related to ABT-418 and estimation of their affinity at neuronal nicotinic acetylcholine receptor subtypes. European Journal of Medicinal Chemistry, 2010, 45, 5594-5601.	5.5	13
54	Correlations of Crystal Structure and Solubility in Organic Salts: The Case of the Antiplasmodial Drug Piperaquine. Crystal Growth and Design, 2019, 19, 1399-1410.	3.0	13

#	Article	IF	CITATIONS
55	Evading Pgp Activity in Drug-Resistant Cancer Cells: A Structural and Functional Study of Antitubulin Furan Metotica Compounds. Molecular Cancer Therapeutics, 2012, 11, 1103-1111.	4.1	12
56	Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors of <i>Trypanosoma brucei</i> FolD and Testing for Antiparasitic Activity. Journal of Medicinal Chemistry, 2015, 58, 7938-7948.	6.4	12
57	Anharmonic motions <i>versus</i> dynamic disorder at the Mg ion from the charge densities in pyrope (Mg ₃ Al ₂ Si ₃ Description of the other. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2017. 73. 722-736.	1.1	12
58	Isonitrile-Based Multicomponent Synthesis of \hat{l}^2 -Amino Boronic Acids as \hat{l}^2 -Lactamase Inhibitors. Antibiotics, 2020, 9, 249.	3.7	12
59	Looking for structural phase transitions in the colossal magnetoresistive thiospinel FeCr2S4 by a multi-temperature single-crystal X-ray diffraction study. Chemical Physics Letters, 2005, 416, 28-32.	2.6	11
60	Single N–C Bond Becomes Shorter than a Formally Double N╀ Bond in a Thiazete-1,1-dioxide Crystal: An Experimental and Theoretical Study of Strong Crystal Field Effects. Crystal Growth and Design, 2014, 14, 4418-4429.	3.0	11
61	Dynamic simulation of liquid molecular nanoclusters: structure, stability and quantification of internal (pseudo)symmetries. New Journal of Chemistry, 2019, 43, 2077-2084.	2.8	11
62	Enantio―and Regioselective Palladium(II) atalyzed Dioxygenation of (Azaâ€)Alkenols. Angewandte Chemie - International Edition, 2021, 60, 21723-21727.	13.8	11
63	Chemo- and Regioselective Palladium(II)-Catalyzed AminoarylÂation of N-Allylureas Providing 4-Arylmethyl Imidazolidinones. Synthesis, 2019, 51, 3462-3470.	2.3	10
64	Switchable Oxidative Reactions of <i>N</i> -allyl-2-Aminophenols: Palladium-Catalyzed Alkoxyacyloxylation vs an Intramolecular Dielsâ€"Alder Reaction. Organic Letters, 2021, 23, 7698-7702.	4.6	10
65	Direct Synthesis of Fluorescent Oxazolo-phenoxazines by Copper-Catalyzed/Hypervalent lodine(III)-Mediated Dimerization/Cyclization of 2-Benzylamino-phenols. Journal of Organic Chemistry, 2022, 87, 1032-1042.	3.2	10
66	Spin density accuracy and distribution in azido Cu(II) complexes: A source function analysis. Journal of Computational Chemistry, 2018, 39, 587-603.	3.3	9
67	lodoamination of Alkenyl Sulfonamides by Potassium Iodide and Hydrogen Peroxide in Aqueous Medium. Helvetica Chimica Acta, 2019, 102, e1900088.	1.6	9
68	The fungal metabolite austdiol. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o199-o201.	0.4	8
69	A variable-temperature X-ray diffraction and theoretical study of conformational polymorphism in a complex organic molecule (DTC). RSC Advances, 2018, 8, 38445-38454.	3.6	8
70	Observation of an exotic lattice structure in the transparent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">K</mml:mi><mml:mi>Ta</mml:mi></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math> and the property of	ım &ı 2∎o>â^	'< <i> </i> 8nml:mo><
71	perovskite supercrystal. Physical Review B, 2020, 102, . Molecular dynamics simulation of organic materials: structure, potentials and the MiCMoS computer platform. CrystEngComm, 2022, 24, 922-930.	2.6	8
72	Non-Decarboxylative Ruthenium-Catalyzed Rearrangement of 4-Alkylidene-isoxazol-5-ones to Pyrazole-and Isoxazole-4-carboxylic Acids. Organic Letters, 2022, , .	4.6	8

#	Article	IF	CITATIONS
73	Detection and kinetics of the single-crystal to single-crystal complete transformation of a thiiranium ion into thietanium ion. Physical Chemistry Chemical Physics, 2009, 11, 7181.	2.8	7
74	Synthesis of unusual isoxazoline containing \hat{l}^2 and \hat{l}^3 -dipeptides as potential glutamate receptor ligands. MedChemComm, 2015, 6, 1260-1266.	3.4	7
75	On the molecular basis of the activity of the antimalarial drug chloroquine: EXAFS-assisted DFT evidence of a direct Fe–N bond with free heme in solution. Physica Scripta, 2016, 91, 023001.	2.5	7
76	Molecular Dynamics Simulation of Molecular Crystals under Anisotropic Compression: Bulk and Directional Effects in Anthracene and Paracetamol. Crystal Growth and Design, 2020, 20, 7421-7428.	3.0	6
77	Design and synthesis of constrained bicyclic molecules as candidate inhibitors of influenza A neuraminidase. PLoS ONE, 2018, 13, e0193623.	2.5	6
78	Total Synthesis of (â^')â€Cannabidiolâ€C ₄ . European Journal of Organic Chemistry, 2022, 2022, .	2.4	6
79	The TACO Puzzle: A Phase-Transition Mystery Revisited. Crystal Growth and Design, 2018, 18, 7219-7227.	3.0	5
80	Stereodivergent Diversityâ€Oriented Synthesis: Exploiting the Versatility of 2â€Piperidine Ethanol. European Journal of Organic Chemistry, 2019, 2019, 4013-4019.	2.4	5
81	Anharmonic Thermal Motion Modelling in the Experimental XRD Charge Density Determination of 1 -Methyluracil at T = 23 K. Molecules, 2021 , 26 , 3075 .	3.8	5
82	Kinetic-Bias Model for the Dynamic Simulation of Molecular Aggregation. The Liquid, Solute, Solvated-Nanodrop, and Solvated-Nanocrystal States of Benzoic Acid. Crystal Growth and Design, 2022, 22, 1857-1866.	3.0	5
83	Developing new Srl ₂ and β- <scp>D</scp> -fructopyranose-based metal–organic frameworks with nonlinear optical properties. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 210-218.	1.1	4
84	Highly diastereoselective entry to chiral oxindole-based \hat{l}^2 -amino boronic acids and spiro derivatives. Organic and Biomolecular Chemistry, 2021, 19, 7211-7216.	2.8	4
85	Multi-temperature Electron Density Studies. , 2011, , 659-696.		3
86	Regioselective Preparation of Functionalized Isoxazoline Derivatives as Key Intermediates for the Synthesis of Selective N-Methyl-d-aspartate Receptor Antagonists. Synthesis, 2011, 2011, 1255-1260.	2.3	3
87	Exploring Chemistry Through the Source Function for the Electron and the Electron Spin Densities. Challenges and Advances in Computational Chemistry and Physics, 2016, , 101-129.	0.6	3
88	Synthesis of <scp> </scp> -Tricholomic Acid Analogues and Pharmacological Characterization at lonotropic Glutamate Receptors. ChemistrySelect, 2017, 2, 10295-10299.	1.5	3
89	Crystallization and structural properties of a family of isotopological 3D-networks: the case of a 4,4â \in 2-bipy ligandâ \in "M2+ triflate system. CrystEngComm, 2018, 20, 3784-3795.	2.6	3
90	Allylation of isatin-derived N-Boc-hydrazones followed by Pd-catalyzed carboamination reaction: an entry to 3-spiro-pyrazolidyl-oxindoles. RSC Advances, 2019, 9, 37788-37800.	3.6	3

#	Article	IF	CITATIONS
91	Unravelling the Chemistry of the [Cu(4,7-Dichloroquinoline)2Br2]2 Dimeric Complex through Structural Analysis: A Borderline Ligand Field Case. Crystals, 2020, 10, 477.	2.2	3
92	Unexpected chiral vicinal tetrasubstituted diamines via borylcopper-mediated homocoupling of isatin imines. Beilstein Journal of Organic Chemistry, 2022, 18, 303-308.	2.2	3
93	A new monoclinic polymorph of 3-diethylamino-4-(4-methoxyphenyl)-1,1-dioxo-4H-1λ6,2-thiazete-4-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2032-o2033.	0.2	2
94	Crystal structure or chemical composition of salt–sugar-based metal–organic frameworks: what are the nonlinear optical properties due to?. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 506-514.	1.1	2
95	Enantio†and Regioselective Palladium(II)â€Catalyzed Dioxygenation of (Azaâ€)Alkenols. Angewandte Chemie, 2021, 133, 21891-21895.	2.0	2
96	Experimental Charge Density Analysis and Electrostatic Properties of Crystalline $1,3$ -Bis(Dimethylamino)Squaraine and Its Dihydrate from Low Temperature (T = 18 and 20 K) XRD Data. Crystals, $2020, 10, 894$.	2.2	1
97	Insights on spin-polarization via the spin density Source Function. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C281-C281.	0.1	1
98	Isothiazoles. Part 13. Synthesis of Sulfamic Esters, [1,2]Thiazete S,Sâ€Dioxides, Benzo[e][1,2]thiazine S,Sâ€Dioxides or Triazoles by Reaction of Isothiazole Dioxides with Sodium Azide ChemInform, 2002, 33, 50-50.	0.0	0
99	Insights on spin-density delocalization/polarization mechanisms through the source function. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1434-C1434.	0.1	0
100	Phase Stability and Morphology of Gel Grown Crystals: The Case of CdCl2-bpp Polymeric System. Crystals, 2019, 9, 363.	2.2	0
101	Decoding conformational polymorphism in organic substances. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C557-C557.	0.1	0
102	CLPdyn: a cheap and reliable tool for molecular dynamics studies of organic molecules in the condensed phase. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e540-e540.	0.1	0