
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Layer Shape LiFePO ₄ Obtained by Powder Extrusion Molding as Solid Boosters for Ferro/Ferricyanide Catholyte in Semisolid Redox Flow Battery: Effect of Porosity and Shape. Batteries and Supercaps, 2022, 5, .	4.7	2
2	Effect of Relaxations on the Conductivity of La _{1/2+1/2<i>x</i>} Li _{1/2–1/2<i>x</i>} Ti _{1–<i>x</i>} Al <i>_x< Fast Ion Conductors. Chemistry of Materials, 2022, 34, 5484-5499.</i>	/ixQ7	3ø/sub>
3	Tape casting manufacturing of thick Li4Ti5O12 ceramic electrodes with high areal capacity for lithium-ion batteries. Journal of the European Ceramic Society, 2021, 41, 1025-1032.	5.7	8
4	Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking. Polymers, 2021, 13, 958.	4.5	9
5	New amphiphilic semi-interpenetrating networks based on polysulfone for anion-exchange membrane fuel cells with improved alkaline and mechanical stabilities. Polymer, 2021, 226, 123824.	3.8	16
6	Sulfonated Polysulfone/TiO2(B) Nanowires Composite Membranes as Polymer Electrolytes in Fuel Cells. Polymers, 2021, 13, 2030.	4.5	9
7	Interplay between Conductivity, Matrix Relaxations and Composition of Caâ€Polyoxyethylene Polymer Electrolytes. ChemElectroChem, 2021, 8, 2459-2466.	3.4	5
8	Ion-Exchanged UPG-1 as Potential Electrolyte for Fuel Cells. Inorganic Chemistry, 2021, 60, 11803-11812.	4.0	5
9	Development of sodium hybrid quasi-solid electrolytes based on porous NASICON and ionic liquids. Journal of the European Ceramic Society, 2021, 41, 7723-7733.	5.7	21
10	Non-woven polyaramid porous membranes as separators for Li-ion batteries?. Electrochimica Acta, 2021, 390, 138835.	5.2	6
11	Reduction of Grain Boundary Resistance of La0.5Li0.5TiO3 by the Addition of Organic Polymers. Nanomaterials, 2021, 11, 61.	4.1	4
12	Proton Conductive Zr-Phosphonate UPG-1—Aminoacid Insertion as Proton Carrier Stabilizer. Molecules, 2020, 25, 3519.	3.8	7
13	Engineering the electrical and optical properties of graphene oxide via simultaneous alkali metal doping and thermal annealing. Journal of Materials Research and Technology, 2020, 9, 15824-15837.	5.8	10
14	Opening the door to liquid-free polymer electrolytes for calcium batteries. Electrochimica Acta, 2020, 353, 136525.	5.2	17
15	High mass loading additive-free LiFePO4 cathodes with 500Âî¼m thickness for high areal capacity Li-ion batteries. Journal of Power Sources, 2020, 458, 228033.	7.8	41
16	Trade-off analysis of C12A7:eâ^' deposition techniques applied to Low Work Function Tethers. Acta Astronautica, 2020, 177, 806-812.	3.2	3
17	Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries. Journal of Power Sources, 2019, 437, 226923.	7.8	57

18Multiblock copolymers of sulfonated PSU/PPSU Poly(ether sulfone)s as solid electrolytes for proton
exchange membrane fuel cells. Electrochimica Acta, 2019, 302, 428-440.5.224

ALEJANDRO VAREZ

#	Article	IF	CITATIONS
19	A new proton-conducting Bi-carboxylate framework. Dalton Transactions, 2019, 48, 11181-11185.	3.3	20
20	Interplay between humidity, temperature and electrical response of a conductivity sensor based on a La ₂ LiNbO ₆ double perovskite. Journal of Materials Chemistry A, 2018, 6, 5430-5442.	10.3	7
21	Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?. Journal of Power Sources, 2018, 383, 157-163.	7.8	23
22	Additive-free Li ₄ Ti ₅ O ₁₂ thick electrodes for Li-ion batteries with high electrochemical performance. Journal of Materials Chemistry A, 2018, 6, 5952-5961.	10.3	33
23	Structural, morphology and luminescence study of Er+3-doped garnet-type Li5La3Nb2O12 electrolytes as a potential new phosphor. Ceramics International, 2018, 44, 18969-18977.	4.8	11
24	Spectroscopy and Judd-Ofelt analysis of Er3+ ions in Li5La3Nb2O12 garnet-type ceramic powder. Journal of Luminescence, 2018, 202, 232-238.	3.1	5
25	Aqueous and non-aqueous Li+/H+ ion exchange in Li0.44La0.52TiO3 perovskite. Advanced Powder Technology, 2017, 28, 514-520.	4.1	9
26	Synthesis and characterization of sulfonated PEEK-WC-PES copolymers for fuel cell proton exchange membrane application. European Polymer Journal, 2017, 93, 390-402.	5.4	22
27	Sodium polymer electrolytes composed of sulfonated polysulfone and macromolecular/molecular solvents for Na-batteries. Electrochimica Acta, 2017, 245, 807-813.	5.2	6
28	Study of the La 1/2+1/2x Li 1/2-1/2x Ti 1-x Al x O 3 (0Ââ‰ÂxÂâ‰Â1) solid solution. A new example of percolative system in fast ion conductors. Journal of Alloys and Compounds, 2017, 720, 460-465.	5.5	6
29	Electrical and Magnetic Properties of NiZn Ferrite Prepared by Conventional and Solar Sintering. Journal of the American Ceramic Society, 2016, 99, 2327-2333.	3.8	10
30	Porous Ni-YSZ planar anodes by powder extrusion moulding employing PMMA as pore former. Powder Metallurgy, 2016, 59, 281-287.	1.7	1
31	Evaluation of polyolefin-based macroporous separators for high temperature Li-ion batteries. Electrochimica Acta, 2016, 216, 68-78.	5.2	57
32	Unravelling the complex nanostructure of La _{0.5â^*x} Li _{0.5â^*x} Sr _{2x} TiO ₃ Li ionic conductors. Dalton Transactions, 2016, 45, 7148-7157.	3.3	10
33	Development of sodium-conducting polymer electrolytes: comparison between film-casting and films obtained via green processes. Electrochimica Acta, 2016, 192, 456-466.	5.2	29
34	High-performance Ni–YSZ thin-walled microtubes for anode-supported solid oxide fuel cells obtained by powder extrusion moulding. RSC Advances, 2016, 6, 19007-19015.	3.6	19
35	Synthesis and characterization of benzimidazolium-functionalized polysulfones as anion-exchange membranes. Journal of Polymer Science Part A, 2015, 53, 2363-2373.	2.3	13
36	Study of the densification, mechanical and magnetic properties of Ni–Zn ferrites sintered in a solar furnace. Ceramics International, 2015, 41, 6534-6541.	4.8	9

#	Article	IF	CITATIONS
37	Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications. Journal of Membrane Science, 2015, 492, 371-379.	8.2	35
38	Electrochemical and structural characterization of sulfonated polysulfone. Polymer Testing, 2015, 45, 185-193.	4.8	34
39	Preparation and characterization of ammonium-functionalized polysulfone/Al2O3 composite membranes. Journal of Materials Science, 2015, 50, 5893-5903.	3.7	14
40	Synthesis and characterization of new membranes based on sulfonated polysulfone/Zn,Al-heptamolibdate LDH. Materials Letters, 2015, 152, 125-127.	2.6	9
41	Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renewable Energy, 2014, 68, 140-145.	8.9	48
42	Synthesis and characterization of polysulfone/layered double hydroxides nanocomposite membranes for fuel cell application. International Journal of Hydrogen Energy, 2014, 39, 4016-4022.	7.1	35
43	Near constant loss regime in fast ionic conductors analyzed by impedance and NMR spectroscopies. Physical Chemistry Chemical Physics, 2014, 16, 15346-15354.	2.8	17
44	Design of industrially scalable microtubular solid oxide fuel cells based on an extruded support. International Journal of Hydrogen Energy, 2014, 39, 5470-5476.	7.1	49
45	Microstructural study of duplex stainless steels obtained by powder injection molding. Journal of Alloys and Compounds, 2014, 589, 314-321.	5.5	15
46	Structural characterisation and Li conductivity of Li1/2â^'xSr2xLa1/2â^'xTiO3 (0 <x<0.5) perovskites.<br="">Ceramics International, 2013, 39, 9619-9626.</x<0.5)>	4.8	17
47	Characterization of 430L porous supports obtained by powder extrusion moulding for their application in solid oxide fuel cells. Materials Characterization, 2013, 86, 108-115.	4.4	16
48	The log(σ) vs. log(ω) derivative plot used to analyze the ac conductivity. Application to fast Li+ ion conductors with perovskite structure. Solid State Ionics, 2012, 227, 113-118.	2.7	26
49	On the Influence of the Vacancy Distribution on the Structure and Ionic Conductivity of A-Site-Deficient Li _{<i>x</i>} Sr _{<i>x</i>} La _{2/3–<i>x</i>} TiO ₃ Perovskites. Inorganic Chemistry, 2012, 51, 5831-5838.	4.0	19
50	The role of Ce reduction in the segregation of metastable phases in the ZrO2–CeO2 system. Journal of the European Ceramic Society, 2012, 32, 689-696.	5.7	17
51	Polymorphism, structural characterisation and electrical properties of Na2Nb4O11. Journal of Materials Chemistry, 2011, 21, 12096.	6.7	21
52	Structural characterisation of ferroelectric Ag2Nb4O11 and dielectric Ag2Ta4O11. Journal of Materials Chemistry, 2011, 21, 2715.	6.7	30
53	Production of Alumina Microparts by Powder Injection Molding. International Journal of Applied Ceramic Technology, 2011, 8, 617-626.	2.1	14
54	Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3480-3488.	5.6	28

#	Article	IF	CITATIONS
55	Humidity Related Low Temperature Conductivity Hysteresis of Ce _{1–} _{<i>x</i>} Zr _{<i>x</i>} O ₂ (0 â‰Â <i>x</i> Ââ‰₿€‰ Structural Disorder Relationship. Fuel Cells, 2011, 11, 642-653.	₀1≱Øeram	ics
56	Microstructure, magnetic and mechanical properties of Ni–Zn ferrites prepared by powder injection moulding. Powder Technology, 2011, 210, 29-35.	4.2	24
57	Li motion mechanisms in (Li,Na)3xLa2/3-xTiO3 (x = 0.067 and 0.167) series followed by ND, NMR and Impedance spectroscopy Materials Research Society Symposia Proceedings, 2011, 1313, 70401.	0.1	1
58	Powder extrusion moulding of 430L stainless steel thin tubes for porous metal supported SOFCs. Powder Metallurgy, 2011, 54, 103-107.	1.7	4
59	Influence of powder particle size distribution on rheological properties of 316L powder injection moulding feedstocks. Powder Technology, 2010, 200, 30-36.	4.2	108
60	Li mobility in Li0.5â^'xNaxLa0.5TiO3 perovskites (0â‰ ¤ â‰ 0 .5)Influence of structural and compositional parameters. Solid State Ionics, 2009, 180, 1362-1371.	2.7	32
61	Fabrication of 8-YSZ thin-wall tubes by powder extrusion moulding for SOFC electrolytes. Ceramics International, 2009, 35, 2329-2335.	4.8	21
62	Multiphase Transformations Controlled by Ostwald's Rule in Nanostructured Ce _{0.5} Zr _{0.5} O ₂ Powders Prepared by a Modified Pechini Route. Inorganic Chemistry, 2009, 48, 9693-9699.	4.0	13
63	Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of the European Ceramic Society, 2008, 28, 763-771.	5.7	131
64	Influence of octahedral tilting and composition on electrical properties of the Li0.2â^'xNaxLa0.6TiO3 (0≤â‰ 0 .2) series. Solid State Ionics, 2008, 179, 495-502.	2.7	12
65	Optimization of the Processing of 8‥SZ Powder by Powder Injection Molding for SOFC Electrolytes. International Journal of Applied Ceramic Technology, 2008, 5, 574-581.	2.1	31
66	Caracterización estructural y espectroscópica de fibras cristalinas de Ce _{0.4} Zr _{0.6} O ₂ crecidas mediante el método de fusión zonal asistida por láser. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2008, 47, 165-170.	1.9	2
67	Metal injection moulding of bronze using thermoplastic binder based on HDPE. Powder Metallurgy, 2007, 50, 184-188.	1.7	6
68	Influence of Binders on the Structure and Properties of High Speed-Steel HS6-5-2 Type Fabricated Using Pressureless Forming and PIM Methods. Materials Science Forum, 2007, 534-536, 693-696.	0.3	2
69	Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process. Materials Science Forum, 2007, 534-536, 353-356.	0.3	6
70	Structural characterization of Ce1â^'xZrxO2 (0≤â‰⊉) samples prepared at 1650°C by solid state reaction. Journal of the European Ceramic Society, 2007, 27, 3677-3682.	5.7	40
71	Cation miscibility in CeO2–ZrO2oxides with fluorite structure. A combined TEM, SAED and XRD Rietveld analysis. Journal of Materials Chemistry, 2006, 16, 4249-4256.	6.7	47
72	Metal injection moulding of HS12-1-5-5 high-speed steel using a PW-HDPE based binder. Journal of Materials Processing Technology, 2006, 175, 173-178.	6.3	20

ALEJANDRO VAREZ

#	Article	IF	CITATIONS
73	Comparison of structure and properties of the HS12-1-5-5 type high-speed steel fabricated using the pressureless forming and PIM methods. Journal of Materials Processing Technology, 2005, 162-163, 230-235.	6.3	9
74	Structure of Fast Ion Conductors Li3xLa2/3-xTiO3 Deduced from Powder Neutron Diffraction Experiments ChemInform, 2005, 36, no.	0.0	1
75	Influence of Percolation Effects on Lithium Intercalation into Li[sub 0.5â^'x]Na[sub x]La[sub 0.5]TiO[sub 3] (0≤â‰0.5) Perovskites. Journal of the Electrochemical Society, 2005, 152, A2285.	2.9	3
76	Development of new feedstock formulation based on high density polyethylene for MIM of M2 high speed steels. Powder Metallurgy, 2005, 48, 134-138.	1.7	40
77	Processing of Mn–Zn ferrites using mould casting with acrylic thermosetting binder. Powder Metallurgy, 2005, 48, 249-253.	1.7	6
78	Structure of Fast Ion Conductors Li3xLa2/3-xTiO3 Deduced from Powder Neutron Diffraction Experiments. Chemistry of Materials, 2005, 17, 2404-2412.	6.7	42
79	Influence of Vacancy Ordering on the Percolative Behavior of (Li1-xNax)3yLa2/3-yTiO3Perovskites. Journal of Physical Chemistry B, 2005, 109, 3262-3268.	2.6	20
80	Rhombohedral-cubic transition in Li0.2Na0.3La0.5TiO3 perovskite. Journal of Solid State Chemistry, 2004, 177, 4665-4671.	2.9	9
81	Sintering in different atmospheres of T15 and M2 high speed steels produced by a modified metal injection moulding process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 366, 318-324.	5.6	32
82	Effect of quenching on structure and antiferroelectric instability of La(2â^'x)/3LixTiO3 compounds: a Raman study. Journal of the European Ceramic Society, 2004, 24, 1135-1139.	5.7	6
83	Structure and mechanical properties of HSS HS6-5-2- and HS12-1-5-5-type steel produced by modified powder injection moulding process. Journal of Materials Processing Technology, 2004, 157-158, 658-668.	6.3	15
84	Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels. Journal of Materials Processing Technology, 2004, 157-158, 324-330.	6.3	14
85	Structural changes produced during heating of the fast ion conductor Li0.18La0.61TiO3. A neutron diffraction study. Journal of Solid State Chemistry, 2004, 177, 1157-1164.	2.9	37
86	Mechanical properties and pitting corrosion behaviour of 316L stainless steel parts obtained by a modified metal injection moulding process. Journal of Materials Processing Technology, 2003, 143-144, 397-402.	6.3	24
87	Magnetic properties of Mg-ferrite after milling process. Journal of Materials Processing Technology, 2003, 143-144, 470-474.	6.3	41
88	Influence of Quenching Treatments on Structure and Conductivity of the Li3xLa2/3-xTiO3Series. Chemistry of Materials, 2003, 15, 225-232.	6.7	50
89	Structural Modifications Induced by High-Temperature Quenching Treatments in the Fast Ion Conductor Li0.18La0.61TiO3:  A Neutron Diffraction Study. Chemistry of Materials, 2003, 15, 4637-4641.	6.7	40
90	Mechanical grinding of Si3N4 to be used as an electrode in lithium batteries. Materials Letters, 2003, 57, 3063-3069.	2.6	30

#	Article	IF	CITATIONS
91	Optimization of the Synthesis of Soft Magnetic Materials by Mechanochemical Process at Room Temperature. Materials Science Forum, 2003, 426-432, 4349-4354.	0.3	9
92	Metal Injection Moulding (MIM) of M2 High Speed Steel Using a Polyethylene Based Binder. Materials Science Forum, 2003, 426-432, 4361-4366.	0.3	9
93	Structure and Properties of the Heat-Treated High-Speed Steel HS6-5-2 and HS12-1-5-5 Produced by Powder Injection Molding Process. Materials Science Forum, 2003, 437-438, 133-136.	0.3	0
94	Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes. Hemijska Industrija, 2003, 57, 262-268.	0.7	0
95	Lithium dynamics and disorder effects in the Raman spectrum ofLa(2â^'x)/3LixTiO3. Physical Review B, 2002, 66, .	3.2	26
96	Li mobility in (Li,Na)yLa0.66-y/3TiO3 perovskites (0.09 <yâ‰8.5). A model system for the percolation theory Materials Research Society Symposia Proceedings, 2002, 756, 1.</yâ‰	0.1	1
97	Percolation-Limited Ionic Diffusion in Li0.5-xNaxLa0.5TiO3Perovskites (0 ≤≤0.5). Chemistry of Materials, 2002, 14, 5148-5152.	6.7	63
98	Octahedral tilting and ordering of vacancies in the fast ion conductor Li0.12La0.63TiO3 perovskite: a neutron diffraction study. Dalton Transactions RSC, 2002, , 1406-1408.	2.3	31
99	Crossover of near-constant loss to ion hopping relaxation in ionically conducting materials: experimental evidences and theoretical interpretation. Journal of Non-Crystalline Solids, 2002, 305, 88-95.	3.1	16
100	Li3xLa(2/3)â^'xTiO3 fast ionic conductors Journal of Non-Crystalline Solids, 2002, 307-310, 992-998.	3.1	34
101	Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1843-1851.	2.2	33
102	Electrode characteristics of Li2Ti3O7-ramsdellite processed by mechanical grinding. Journal of Materials Science, 2002, 37, 3981-3986.	3.7	10
103	Low temperature ac conductivity in the fast ionic conductor Li0.18La0.61TiO3. Journal of Alloys and Compounds, 2001, 323-324, 545-548.	5.5	2
104	Microstructural development of the La0.5Li0.5TiO3 lithium ion conductor processed by the laser floating zone (LFZ) method. Journal of Materials Chemistry, 2001, 11, 125-130.	6.7	17
105	Origin of Constant Loss in Ionic Conductors. Physical Review Letters, 2001, 86, 1279-1282.	7.8	208
106	Processing of P/M M2 high speed steels by mould casting using thermosetting binders. Journal of Materials Processing Technology, 2001, 119, 1-6.	6.3	10
107	Processing of P/M T15 high speed steels by mould casting using thermosetting binders. Materials Chemistry and Physics, 2001, 67, 43-48.	4.0	22
108	On the Location of Li+ Cations in the Fast Li-Cation Conductor La0.5Li0.5TiO3 Perovskite. Angewandte Chemie - International Edition, 2000, 39, 619-621.	13.8	126

#	Article	IF	CITATIONS
109	Structural Study of Electrochemically Obtained Li2+xTi3O7. Journal of Solid State Chemistry, 2000, 153, 132-139.	2.9	31
110	Influence of composition on the structure and conductivity of the fast ionic conductors La2/3â´'xLi3xTiO3 (0.03â‰ ¤ â‰ û .167). Solid State Ionics, 2000, 134, 219-228.	2.7	162
111	Modified metal injection moulding process of 316L stainless steel powders using thermosetting binder. Powder Metallurgy, 2000, 43, 233-237.	1.7	17
112	Li Mobility in the Orthorhombic Li0.18La0.61TiO3Perovskite Studied by NMR and Impedance Spectroscopies. Chemistry of Materials, 2000, 12, 1694-1701.	6.7	80
113	Tratamiento mecanoquÃmico de la ferrita MgFe ₂ O ₄ . Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 277-280.	1.9	2
114	Structure and reaction with lithium of tetragonal pyrochlore-like compound Sm2Ti2O7. Journal of Materials Processing Technology, 1999, 92-93, 529-533.	6.3	15
115	New electrode materials for lithium rechargeable batteries. Journal of Power Sources, 1999, 81-82, 85-89.	7.8	25
116	Non-Debye conductivity relaxation in the non-Arrhenius Li0.5La0.5TiO3 fast ionic conductor. A nuclear magnetic resonance and complex impedance study. Journal of Non-Crystalline Solids, 1998, 235-237, 753-760.	3.1	35
117	Electrochemical lithium intercalation in Li2Ti3O7-ramsdellite structure. Materials Research Bulletin, 1997, 32, 993-1001.	5.2	58
118	Electrical conductivity relaxation and nuclear magnetic resonance of Li conductingLi0.5La0.5TiO3. Physical Review B, 1996, 54, 184-189.	3.2	93
119	Structural details and lithium intercalation in the perovskite La _{0.5} Li _{0.5} TiO ₃ . Phase Transitions, 1996, 58, 111-120.	1.3	7
120	Microstructural Study of La0.5Li0.5TiO3. Journal of Solid State Chemistry, 1995, 118, 78-83.	2.9	79
121	Misinterpreting Aquinas. Nature, 1995, 373, 652-652.	27.8	2
122	Ionic conductivity of chemically lithiated YBa2Cu3O7: NMR and impedance spectroscopic studies. Journal of Physics Condensed Matter, 1995, 7, 5477-5489.	1.8	1
123	Microstructural Changes in the Reduction of Pr-123 with Lithium. Journal of Solid State Chemistry, 1994, 111, 89-95.	2.9	2
124	On the electrochemical reduction of YBa2Cu3O7 with lithium. Physica C: Superconductivity and Its Applications, 1994, 235-240, 387-388.	1.2	0
125	On the motion of lithium in YBa2Cu3O7 lithiated materials. Solid State Ionics, 1993, 63-65, 518-522.	2.7	4
126	Room temperature lithium reduction of La2MO4+δ(M=Cu, Ni). Solid State Ionics, 1993, 63-65, 907-914.	2.7	6

ALEJANDRO VAREZ

#	Article	IF	CITATIONS
127	A new Li-conductor based on HTSC Pb2Sr2Y1â^'xCaxCu3O8+δâ~†. Solid State Ionics, 1993, 66, 225-230.	2.7	0
128	MIXED CONDUCTORS OBTAINED BY CHEMICAL LITHIATION OF HTSC AND RELATED MATERIALS: AN OVERVIEW. , 1992, , 507-513.		0
129	A novel "126―phase of the family of Y2Ba4Cu6+nO14+n high-temperature superconducting materials. Physica C: Superconductivity and Its Applications, 1991, 172, 477-480.	1.2	26
130	The structural consequences of the chemical reaction of YBa2Cu3O7â^'y with n-butyl lithium. Journal of Solid State Chemistry, 1991, 95, 388-396.	2.9	12
131	Lithium Insertion in La2NiO4+y. Materials Research Society Symposia Proceedings, 1990, 210, 467.	0.1	0
132	Ionic conductivity of lithium inserted Ba2YCu3O7â^'y. Solid State Communications, 1990, 76, 917-920.	1.9	17
133	Lithium insertion in Ba2YCu3O7-y. Solid State Ionics, 1990, 44, 73-80.	2.7	20
134	Magnetic Properties of Ni-Ferrite Produced by High Energy Milling. Ceramic Transactions, 0, , 219-227.	0.1	0