Min-Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6514068/publications.pdf

Version: 2024-02-01

		1163117	1058476
15	297	8	14
papers	citations	h-index	g-index
15	15	15	407
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison of milling fractions of tartary buckwheat for their phenolics and antioxidant properties. Food Research International, 2012, 49, 53-59.	6.2	84
2	<scp>d</scp> - <i>chiro</i> -lnositol Ameliorates High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance via PKCÎμ-PI3K/AKT Pathway. Journal of Agricultural and Food Chemistry, 2019, 67, 5957-5967.	5.2	38
3	Protocatechuic Acid Ameliorated Palmitic-Acid-Induced Oxidative Damage in Endothelial Cells through Activating Endogenous Antioxidant Enzymes via an Adenosine-Monophosphate-Activated-Protein-Kinase-Dependent Pathway. Journal of Agricultural and Food Chemistry. 2018. 66. 10400-10409.	5.2	34
4	Activation of AMPK/Sirt3 pathway by phloretin reduces mitochondrial ROS in vascular endothelium by increasing the activity of MnSOD <i>via</i> deacetylation. Food and Function, 2020, 11, 3073-3083.	4.6	31
5	Protocatechuic Acid-Ameliorated Endothelial Oxidative Stress through Regulating Acetylation Level via CD36/AMPK Pathway. Journal of Agricultural and Food Chemistry, 2019, 67, 7060-7072.	5.2	24
6	Vanillic acid alleviates palmitic acidâ€induced oxidative stress in human umbilical vein endothelial cells via Adenosine Monophosphateâ€Activated Protein Kinase signaling pathway. Journal of Food Biochemistry, 2019, 43, e12893.	2.9	19
7	<scp>d</scp> â€Chiro inositol ameliorates endothelial dysfunction via inhibition of oxidative stress and mitochondrial fission. Molecular Nutrition and Food Research, 2017, 61, 1600710.	3.3	17
8	<scp>d</scp> -Fagomine Attenuates High Glucose-Induced Endothelial Cell Oxidative Damage by Upregulating the Expression of PGC-1α. Journal of Agricultural and Food Chemistry, 2018, 66, 2758-2764.	5.2	17
9	Ginsenoside Rb1 Protects Human Umbilical Vein Endothelial Cells against High Glucose-Induced Mitochondria-Related Apoptosis through Activating SIRT3 Signalling Pathway. Chinese Journal of Integrative Medicine, 2021, 27, 336-344.	1.6	9
10	<scp>d</scp> - <i>chiro</i> -lnositol facilitates adiponectin biosynthesis and activates the AMPKα/PPARs pathway to inhibit high-fat diet-induced obesity and liver lipid deposition. Food and Function, 2022, 13, 7192-7203.	4.6	7
11	The distribution of D-chiro-inositol in buckwheat and its antioxidative effect in HepG2. Journal of Cereal Science, 2019, 89, 102808.	3.7	6
12	The profile of buckwheat tannins based on widely targeted metabolome analysis and pharmacokinetic study of ellagitannin metabolite urolithin A. LWT - Food Science and Technology, 2022, 156, 113069.	5.2	6
13	Regulatory Effect of Sea-Buckthorn Procyanidins on Oxidative Injury HUVECs. Frontiers in Nutrition, 2022, 9, .	3.7	3
14	Phloretin attenuation of hepatic steatosis <i>via</i> an improvement of mitochondrial dysfunction by activating AMPK-dependent signaling pathways in C57BL/6J mice and HepG2 cells. Food and Function, 2021, 12, 12421-12433.	4.6	2
15	Quercetin and d-chiro-inositol combined alleviate hepatic insulin resistance. Food Bioscience, 2021, 43, 101255.	4.4	O