
Elsje Alessandra Quadrelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6513933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS Applied Materials & Interfaces, 2022, 14, 14182-14192.	8.0	22
2	A family of rhodium(<scp>i</scp>) NHC chelates featuring O-containing tethers for catalytic tandem alkene isomerization–hydrosilylation. Dalton Transactions, 2021, 50, 869-879.	3.3	13
3	Stabilizing an ultrathin MoS ₂ layer during electrocatalytic hydrogen evolution with a crystalline SnO ₂ underlayer. RSC Advances, 2021, 11, 17985-17992.	3.6	1
4	Heterogenization of a Molecular Ni Catalyst within a Porous Macroligand for the Direct C–H Arylation of Heteroarenes. ACS Catalysis, 2021, 11, 3507-3515.	11.2	22
5	Highly-dispersed ultrafine Pt nanoparticles on microemulsion-mediated TiO2 for production of hydrogen and valuable chemicals via oxidative photo-dehydrogenation of glycerol. Journal of Environmental Chemical Engineering, 2021, 9, 105070.	6.7	16
6	Porous Macroligands: Materials for Heterogeneous Molecular Catalysis. ChemCatChem, 2020, 12, 1270-1275.	3.7	27
7	Insights on the surface chemistry of BiVO4 photoelectrodes and the role of Al overlayers on its water oxidation activity. Applied Catalysis A: General, 2020, 605, 117796.	4.3	10
8	Synthetic and computational assessment of a chiral metal–organic framework catalyst for predictive asymmetric transformation. Chemical Science, 2020, 11, 8800-8808.	7.4	21
9	Lability of Ta–NHC adducts as a synthetic route towards heterobimetallic Ta/Rh complexes. Dalton Transactions, 2020, 49, 3120-3128.	3.3	15
10	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 5116-5122.	13.8	60
11	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO 2 Reduction. Angewandte Chemie, 2020, 132, 5154-5160.	2.0	15
12	Regiospecificity in Ligand-Free Pd-Catalyzed C–H Arylation of Indoles: LiHMDS as Base and Transient Directing Group. ACS Catalysis, 2020, 10, 2713-2719.	11.2	32
13	Nickel-catalyzed and Li-mediated regiospecific C–H arylation of benzothiophenes. Green Chemistry, 2020, 22, 3155-3161.	9.0	11
14	Direct Synthesis of Cycloalkanes from Diols and Secondary Alcohols or Ketones Using a Homogeneous Manganese Catalyst. Journal of the American Chemical Society, 2019, 141, 17487-17492.	13.7	75
15	Tandem Hydrogenation/Hydrogenolysis of Furfural to 2-Methylfuran over a Fe/Mg/O Catalyst: Structure–Activity Relationship. Catalysts, 2019, 9, 895.	3.5	18
16	Electrocatalytic Performance of Titania Nanotube Arrays Coated with MoS ₂ by ALD toward the Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 8816-8823.	3.5	16
17	Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries. Studies in Surface Science and Catalysis, 2019, 178, 65-84.	1.5	11
18	Photoproduction of Ammonia. Studies in Surface Science and Catalysis, 2019, , 47-63.	1.5	6

#	Article	IF	CITATIONS
19	Production of Solar Fuels Using CO2. Studies in Surface Science and Catalysis, 2019, , 7-30.	1.5	11
20	A Self-Limited Atomic Layer Deposition of WS ₂ Based on the Chemisorption and Reduction of Bis(<i>t</i> -butylimino)bis(dimethylamino) Complexes. Chemistry of Materials, 2019, 31, 1881-1890.	6.7	24
21	Microporous Polymers as Macroligands for Pentamethylcyclopentadienylrhodium Transferâ€Hydrogenation Catalysts. ChemCatChem, 2018, 10, 1778-1782.	3.7	14
22	Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: Insight into Pr dominance over Pt nanoparticles and metal–support interaction. Applied Catalysis B: Environmental, 2018, 226, 147-161.	20.2	66
23	Hammett Parameter in Microporous Solids as Macroligands for Heterogenized Photocatalysts. ACS Catalysis, 2018, 8, 1653-1661.	11.2	50
24	Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHCâ€OH Ligand. Chemistry - A European Journal, 2018, 24, 4361-4370.	3.3	33
25	Ceria-supported small Pt and Pt 3 Sn nanoparticles for NO x -assisted soot oxidation. Applied Catalysis B: Environmental, 2017, 209, 295-310.	20.2	67
26	Harvesting renewable energy with chemistry. Green Chemistry, 2017, 19, 2307-2308.	9.0	26
27	CuO nanoparticles supported by ceria for NO x -assisted soot oxidation: insight into catalytic activity and sintering. Applied Catalysis B: Environmental, 2017, 216, 41-58.	20.2	72
28	Highly Selective Hydrogenation of R-(+)-Limonene to (+)- <i>p-</i> 1-Menthene in Batch and Continuous Flow Reactors. ACS Sustainable Chemistry and Engineering, 2017, 5, 3762-3767.	6.7	20
29	Sensitive Photoacoustic IR Spectroscopy for the Characterization of Amino/Azido Mixed‣inker Metal–Organic Frameworks. ChemPhysChem, 2017, 18, 2855-2858.	2.1	3
30	Enhanced formation of >C1 Products in Electroreduction of CO ₂ by Adding a CO ₂ Adsorption Component to a Gasâ€Diffusion Layerâ€Type Catalytic Electrode. ChemSusChem, 2017, 10, 4442-4446.	6.8	50
31	Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	13
32	A novel 2-step ALD route to ultra-thin MoS ₂ films on SiO ₂ through a surface organometallic intermediate. Nanoscale, 2017, 9, 538-546.	5.6	55
33	Enhanced Ligandâ€Based Luminescence in Metal–Organic Framework Sensor. ChemNanoMat, 2016, 2, 866-872.	2.8	26
34	CO2 Reduction Reactions by Rhodium-Based Catalysts. Topics in Organometallic Chemistry, 2016, , 263-282.	0.7	3
35	Reactivity of Hydrosilanes with the CrII/SiO2 Phillips Catalyst: Observation of Intermediates and Properties of the Modified CrII Sites. Topics in Catalysis, 2016, 59, 1732-1739.	2.8	3
36	Highlights from the Faraday Discussion on Carbon Dioxide Utilisation, Sheffield, UK, September 2015. Chemical Communications, 2016, 52, 232-238.	4.1	0

#	Article	IF	CITATIONS
37	A Simple and Nonâ€Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 3713-3718.	3.3	28
38	25 years of energy and green chemistry: saving, storing, distributing and using energy responsibly. Green Chemistry, 2016, 18, 328-330.	9.0	37
39	C–H Bond Activation of Benzene, Toluene, 3,3â€Dimethylâ€1â€butene and Methane by Silicaâ€Supported Ta ^V Imido Amido Surface Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 56-60.	1.2	1
40	Potential CO2 Utilisation Contributions to a More Carbon-Sober Future. , 2015, , 285-302.		8
41	Atom efficiency in small molecule and macromolecule synthesis: general discussion. Faraday Discussions, 2015, 183, 97-123.	3.2	1
42	Wider Impacts: general discussion. Faraday Discussions, 2015, 183, 349-368.	3.2	3
43	Hydrazine N–N Bond Cleavage over Silica-Supported Tantalum-Hydrides. Inorganic Chemistry, 2015, 54, 11648-11659.	4.0	8
44	Photocatalytic Carbon Dioxide Reduction with Rhodiumâ€based Catalysts in Solution and Heterogenized within Metal–Organic Frameworks. ChemSusChem, 2015, 8, 603-608.	6.8	177
45	Enantiopure Peptide-Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 9409-9416.	13.7	166
46	Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43, 547-564.	38.1	634
47	A water-based and high space-time yield synthetic route to MOF Ni ₂ (dhtp) and its linker 2,5-dihydroxyterephthalic acid. Journal of Materials Chemistry A, 2014, 2, 17757-17763.	10.3	60
48	Design of microporous mixed zinc–nickel triazolate metal–organic frameworks with functional ligands. CrystEngComm, 2013, 15, 9336.	2.6	10
49	Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy and Environmental Science, 2013, 6, 1711.	30.8	1,011
50	The Effect of Hydrosilanes on the Active Sites of the Phillips Catalyst: The Secret for In Situ αâ€Olefin Generation. Chemistry - A European Journal, 2013, 19, 17277-17282.	3.3	23
51	Successive Heterolytic Cleavages of H ₂ Achieve N ₂ Splitting on Silica-Supported Tantalum Hydrides: A DFT Proposed Mechanism. Inorganic Chemistry, 2012, 51, 7237-7249.	4.0	35
52	Ethylene polymerization on a SiH4-modified Phillips catalyst: detection of in situ produced α-olefins by operando FT-IR spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 2239.	2.8	27
53	Singleâ€Phase Heterogeneous Pt ₃ Sn Catalyst Synthesized by Roomâ€Temperature Selfâ€Assembly. ChemCatChem, 2012, 4, 1729-1732.	3.7	8
54	Titration of Zr ₃ (μâ€OH) Hydroxy Groups at the Cornerstones of Bulk MOF UiOâ€67, [Zr ₆ O ₄ (OH) ₄ (biphenyldicarboxylate) ₆], and Their Reaction with [AuMe(PMe ₃)]. European Journal of Inorganic Chemistry, 2012, 2012, 3014-3022.	2.0	66

#	Article	IF	CITATIONS
55	Bulk Hydrodesulfurization Catalyst Obtained by Mo(CO) ₆ Grafting on the Metal–Organic Framework Ni ₂ (2,5-dihydroxoterephthalate). ACS Catalysis, 2012, 2, 695-700.	11.2	22
56	Functionalization of CPO-27-Ni through metal hexacarbonyls: The role of open Ni2+ sites. Microporous and Mesoporous Materials, 2012, 157, 56-61.	4.4	13
57	Heterolytic cleavage of ammonia N–H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance. New Journal of Chemistry, 2011, 35, 1011.	2.8	11
58	Ammonia and Dinitrogen Activation by Surface Organometallic Chemistry on Silicaâ€Grafted Tantalum Hydrides. European Journal of Inorganic Chemistry, 2011, 2011, 1349-1359.	2.0	20
59	Carbon Dioxide Recycling: Emerging Largeâ€Scale Technologies with Industrial Potential. ChemSusChem, 2011, 4, 1194-1215.	6.8	520
60	Green Carbon Dioxide. ChemSusChem, 2011, 4, 1179-1181.	6.8	35
61	On silsesquioxanes' accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coordination Chemistry Reviews, 2010, 254, 707-728.	18.8	176
62	Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22, 6632-6640.	6.7	1,547
63	H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2. Topics in Catalysis, 2009, 52, 1482-1491.	2.8	14
64	Structure and Enhanced Reactivity of Chromocene Carbonyl Confined inside Cavities of NaY Zeolite. Journal of Physical Chemistry C, 2009, 113, 7305-7315.	3.1	29
65	Dinitrogen Dissociation on an Isolated Surface Tantalum Atom. Science, 2007, 317, 1056-1060.	12.6	163
66	Well-Defined Surface Imido Amido Tantalum(V) Species from Ammonia and Silica-Supported Tantalum Hydrides. Journal of the American Chemical Society, 2007, 129, 176-186.	13.7	79
67	A Well-Defined, Silica-Supported Tungsten Imido Alkylidene Olefin Metathesis Catalyst. Organometallics, 2006, 25, 3554-3557.	2.3	152
68	Understanding the reactivity of [WNAr(CH2tBu)2(CHtBu)] (Ar=2,6-iPrC6H3) with silica partially dehydroxylated at low temperatures through a combined use of molecular and surface organometallic chemistry. Journal of Organometallic Chemistry, 2006, 691, 5448-5455.	1.8	42
69	Grafting of [Mn(CH2tBu)2(tmeda)] on Silica and Comparison with Its Reaction with a Silsesquioxane. Chemistry - A European Journal, 2005, 11, 7358-7365.	3.3	38
70	The mononuclear and dinuclear dimethoxyethane adducts of lanthanide trichlorides [LnCl3(DME)2]n, n=1 or 2, fundamental starting materials in lanthanide chemistry: preparation and structures. Inorganica Chimica Acta, 2004, 357, 1538-1548.	2.4	38
71	Methane activation by silica-supported Zr(iv) hydrides: the dihydride [(î€,SiO)2ZrH2] is much faster than the monohydride [(î€,SiO)3ZrH]. Chemical Communications, 2004, , 1729-1731.	4.1	35
72	Detailed Structural Investigation of the Grafting of [Ta(CHtBu)(CH2tBu)3] and [Cp*TaMe4] on Silica Partially Dehydroxylated at 700 °C and the Activity of the Grafted Complexes toward Alkane Metathesis. Journal of the American Chemical Society, 2004, 126, 13391-13399.	13.7	136

#	Article	IF	CITATIONS
73	Formation of Double Cubanes [Sn7(NR)8] in the Reactions of Pyridyl and Pyrimidinyl Amines with Sn(NMe2)2: A Synthetic and Theoretical Studyâ€. Inorganic Chemistry, 2002, 41, 1492-1501.	4.0	15
74	Lanthanide Contraction over the 4f Series Follows a Quadratic Decay. Inorganic Chemistry, 2002, 41, 167-169.	4.0	73
75	Molecular Insight Into Surface Organometallic Chemistry Through the Combined Use of 2D HETCOR Solid-State NMR Spectroscopy and Silsesquioxane Analogues. Angewandte Chemie - International Edition, 2002, 41, 16-16.	13.8	1
76	The ligand polyhedral model: its application to carbonyl clusters containing thirteen carbonyl groupsâ€. Dalton Transactions RSC, 2001, , 1063-1068.	2.3	6
77	Gold molecular precursors and gold–silica interactions. Dalton Transactions RSC, 2001, , 2704-2709. Molecular Insight Into Surface Organometallic Chemistry Through the Combined Use of 2D HETCOR	2.3	32
78	Solid-State NMR Spectroscopy and Silsesquioxane Analogues We are also indebted to the CNRS, ENS Lyon, and ESCPE Lyon for financial support. M.C. is grateful to the French ministry of education, research, and technology (MENRT) for a pre-doctoral fellowship. E.A.Q. gratefully acknowledges UniversitĂ di Pisa and S.N.A.M. for financial support. 2D HETCOR=two-dimensional heteronuclear	13.8	76
79	correlation Angewandte Chemie - International Edition, 2001, 40, 4493. Molecular insight into the non-innocence of a silica-support: the structure of a platinum–silsesquioxane derivative. Chemical Communications, 2000, , 1031-1032.	4.1	28
80	A Density Functional Study of Open-Shell Cyclopentadienylâ^'Molybdenum(II) Complexes. A Comparison of Stabilizing Factors:  Spin-Pairing, Moâ^'X Ï€ Bonding, and Release of Steric Pressure. Inorganic Chemistry, 2000, 39, 517-524.	4.0	16
81	Electrophilic Addition vs Electron Transfer for the Interaction of Ag+with Molybdenum(II) Hydrides. 1. Reaction with CpMoH(PMe3)3and the Mechanism of Decomposition of [CpMoH(PMe3)3]+. Organometallics, 1998, 17, 5767-5775.	2.3	27
82	Experimental and computational studies of the stability and reactivity of a half-sandwich 16-electron spin triplet Moll complex containing a terminal hydroxide ligand. New Journal of Chemistry, 1998, 22, 435-450.	2.8	10
83	Electrophilic Addition vs Electron Transfer for the Interaction of Ag+with Molybdenum(II) Hydrides. 2. Reaction with CpMoH(CO)2(PMe3). Organometallics, 1998, 17, 5776-5781.	2.3	12
84	H+/AuPPh3+Exchange for the Hydride Complexes CpMoH(CO)2(L) (L = PMe3, PPh3, CO). Formation and Structure of [Cp(CO)2(PMe3)Mo(AuPPh3)2]+[BF4] Inorganic Chemistry, 1997, 36, 3001-3007.	4.0	18
85	Oxidation and Protonation of Transition Metal Hydrides:  Role of an Added Base as Proton Shuttle and Nature of Protonated Water in Acetonitrile. Inorganic Chemistry, 1996, 35, 5154-5162.	4.0	47
86	Molecular Insight for Silica-Supported Organometallic Chemistry through Transition Metal		4

⁸⁶ Silsesquioxanes. , 0, , 557-598.