Raphael F Ribeiro

List of Publications by Citations

Source: https://exaly.com/author-pdf/6513859/raphael-f-ribeiro-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47
papers

2,397
citations

24
h-index

9-index

55
ext. papers

27
28
papers

29
papers

48
papers

5-71
papers

48
pape

#	Paper	IF	Citations
47	Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 14556-62	3.4	625
46	Polariton chemistry: controlling molecular dynamics with optical cavities. <i>Chemical Science</i> , 2018 , 9, 63	25 ₉ 6433′	9 233
45	Does Coherence Enhance Transport in Photosynthesis?. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 362-7	6.4	129
44	Theory for polariton-assisted remote energy transfer. <i>Chemical Science</i> , 2018 , 9, 6659-6669	9.4	101
43	Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. <i>Nature Communications</i> , 2019 , 10, 4685	17.4	97
42	Exploiting chemistry and molecular systems for quantum information science. <i>Nature Reviews Chemistry</i> , 2020 , 4, 490-504	34.6	87
41	Two-dimensional infrared spectroscopy of vibrational polaritons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4845-4850	11.5	85
40	Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. <i>Journal of Computer-Aided Molecular Design</i> , 2010 , 24, 317-33	4.2	79
39	Polariton-Assisted Singlet Fission in Acene Aggregates. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1951-1957	6.4	68
38	Intermolecular vibrational energy transfer enabled by microcavity strong light-matter coupling. <i>Science</i> , 2020 , 368, 665-667	33.3	63
37	Can Ultrastrong Coupling Change Ground-State Chemical Reactions?. ACS Photonics, 2018, 5, 167-176	6.3	58
36	Inverting singlet and triplet excited states using strong light-matter coupling. <i>Science Advances</i> , 2019 , 5, eaax4482	14.3	57
35	Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. <i>Chemical Science</i> , 2020 , 11, 343-354	9.4	55
34	Remote Control of Chemistry in Optical Cavities. <i>CheM</i> , 2019 , 5, 1167-1181	16.2	52
33	Plexciton Dirac points and topological modes. <i>Nature Communications</i> , 2016 , 7, 11783	17.4	52
32	Topologically protected excitons in porphyrin thin films. <i>Nature Materials</i> , 2014 , 13, 1026-32	27	47
31	Theory for Nonlinear Spectroscopy of Vibrational Polaritons. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3766-3771	6.4	47

(2021-2020)

30	Polaritonic normal modes in transition state theory. <i>Journal of Chemical Physics</i> , 2020 , 152, 161101	3.9	41
29	Coherent exciton dynamics in supramolecular light-harvesting nanotubes revealed by ultrafast quantum process tomography. <i>ACS Nano</i> , 2014 , 8, 5527-34	16.7	41
28	The solvation, partitioning, hydrogen bonding, and dimerization of nucleotide bases: a multifaceted challenge for quantum chemistry. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 10908-22	3.6	39
27	Manipulating optical nonlinearities of molecular polaritons by delocalization. <i>Science Advances</i> , 2019 , 5, eaax5196	14.3	39
26	State-Selective Polariton to Dark State Relaxation Dynamics. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5918-5927	2.8	36
25	Ultrafast Spectroscopy		28
24	Triplet harvesting in the polaritonic regime: A variational polaron approach. <i>Journal of Chemical Physics</i> , 2019 , 151, 054106	3.9	27
23	Polariton chemistry: Thinking inside the (photon) box. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5214-5216	11.5	20
22	Corrections to Thomas-Fermi densities at turning points and beyond. <i>Physical Review Letters</i> , 2015 , 114, 050401	7.4	17
21	Polariton Assisted Down-Conversion of Photons via Nonadiabatic Molecular Dynamics: A Molecular Dynamical Casimir Effect. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 152-159	6.4	17
20	Molecular Emission near Metal Interfaces: The Polaritonic Regime. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 6511-6516	6.4	16
19	Catalysis by Dark States in Vibropolaritonic Chemistry <i>Physical Review Letters</i> , 2022 , 128, 096001	7.4	16
18	Nonequilibrium effects of cavity leakage and vibrational dissipation in thermally activated polariton chemistry. <i>Journal of Chemical Physics</i> , 2021 , 154, 084108	3.9	15
17	Practical witness for electronic coherences. <i>Journal of Chemical Physics</i> , 2014 , 141, 244109	3.9	12
16	Leading corrections to local approximations. II. The case with turning points. <i>Physical Review B</i> , 2017 , 95,	3.3	9
15	Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent. <i>Journal of Chemical Theory and Computation</i> , 2009 , 5, 2284-300	6.4	9
14	Active Plasmonics and Active Chiral Plasmonics through Orientation-Dependent Multipolar Interactions. <i>ACS Nano</i> , 2020 , 14, 11518-11532	16.7	7
13	Enhanced optical nonlinearities under collective strong light-matter coupling. <i>Physical Review A</i> , 2021 , 103,	2.6	7

12	Generalization of the Tavistummings model for multi-level anharmonic systems. <i>New Journal of Physics</i> , 2021 , 23, 063081	2.9	6
11	Optical Activity from the Exciton Aharonov B ohm Effect: A Floquet Engineering Approach. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 4206-4214	3.8	5
10	Deriving uniform semiclassical approximations for one-dimensional fermionic systems. <i>Journal of Chemical Physics</i> , 2018 , 148, 194103	3.9	5
9	Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. <i>Nature Communications</i> , 2021 , 12, 6519	17.4	5
8	Driving chemical reactions with polariton condensates <i>Nature Communications</i> , 2022 , 13, 1645	17.4	4
7	Continuous vibronic symmetries in Jahn-Teller models. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 333001	1.8	3
6	Remarks on time-dependent [current]-density functional theory for open quantum systems. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12626-36	3.6	3
5	Comment on Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode <i>New Journal of Physics</i> , 2018 , 20, 018002	2.9	3
4	Vibronic Ground-State Degeneracies and the Berry Phase: A Continuous Symmetry Perspective. Journal of Physical Chemistry Letters, 2018 , 9, 242-247	6.4	2
3	Purcell Effect of Plasmonic Surface Lattice Resonances and Its Influence on Energy Transfer. <i>ACS Photonics</i> , 2021 , 8, 2211-2219	6.3	2
2	Enantioselective Topological Frequency Conversion Journal of Physical Chemistry Letters, 2022, 2434-2	24644	0
1	Computational method for highly constrained molecular dynamics of rigid bodies: Coarse-grained simulation of auxetic two-dimensional protein crystals. <i>Journal of Chemical Physics</i> , 2020 , 152, 244102	3.9	