Xia-Lin Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6513677/publications.pdf

Version: 2024-02-01

687363 839539 18 449 13 18 h-index citations g-index papers 18 18 18 392 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Improving the Membrane Permeability of 5-Fluorouracil via Cocrystallization. Crystal Growth and Design, 2016, 16, 4430-4438.	3.0	81
2	Pharmaceutical cocrystallization: an effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm, 2018, 20, 5292-5316.	2.6	79
3	Temozolomide–Hesperetin Drug–Drug Cocrystal with Optimized Performance in Stability, Dissolution, and Tabletability. Crystal Growth and Design, 2021, 21, 838-846.	3.0	53
4	Solubility and Permeability Improvement of Allopurinol by Cocrystallization. Crystal Growth and Design, 2020, 20, 5160-5168.	3.0	31
5	Constructing Anti-Glioma Drug Combination with Optimized Properties through Cocrystallization. Crystal Growth and Design, 2018, 18, 4270-4274.	3.0	27
6	Intermolecular interactions and permeability of 5-fluorouracil cocrystals with a series of isomeric hydroxybenzoic acids: a combined theoretical and experimental study. CrystEngComm, 2019, 21, 5095-5105.	2.6	26
7	Crystal Structures, Stability, and Solubility Evaluation of Two Polymorphs of a 2:1 Melatonin–Piperazine Cocrystal. Crystal Growth and Design, 2020, 20, 1079-1087.	3.0	25
8	Modulating the solubility and pharmacokinetic properties of 5-fluorouracil <i>via</i> cocrystallization. CrystEngComm, 2020, 22, 3670-3682.	2.6	21
9	A 5-fluorouracil–kaempferol drug–drug cocrystal: a ternary phase diagram, characterization and property evaluation. CrystEngComm, 2020, 22, 8127-8135.	2.6	20
10	Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways. Physical Chemistry Chemical Physics, 2018, 20, 14469-14481.	2.8	14
11	Polymorphic Forms of a Molecular Salt of Phenazopyridine with 3,5-Dihydroxybenzoic Acid: Crystal Structures, Theoretical Calculations, Thermodynamic Stability, and Solubility Aspects. Crystal Growth and Design, 2019, 19, 5636-5647.	3.0	14
12	5-Fluorouracil Cocrystals with Lipophilic Hydroxy-2-Naphthoic Acids: Crystal Structures, Theoretical Computations, and Permeation Studies. Crystal Growth and Design, 2020, 20, 923-933.	3.0	14
13	Modulation of Solid-State Optical Properties of <i>o</i> -Hydroxynaphthoic Acids through Formation of Charge Transfer Cocrystals with TCNB. Crystal Growth and Design, 2020, 20, 7492-7500.	3.0	13
14	Cocrystals of regorafenib with dicarboxylic acids: synthesis, characterization and property evaluation. CrystEngComm, 2021, 23, 653-662.	2.6	11
15	Cocrystallization of axitinib with carboxylic acids: preparation, crystal structures and dissolution behavior. CrystEngComm, 2021, 23, 5504-5515.	2.6	9
16	Near-infrared photothermal conversion properties of carbazole-based cocrystals with different degrees of charge transfer. CrystEngComm, 2022, 24, 4622-4628.	2.6	7
17	Two anhydrous forms and one monohydrate of a cocrystal of axitinib and glutaric acid: characterization, property evaluation and phase transition study. CrystEngComm, 2022, 24, 2138-2148.	2.6	2
18	Simultaneously improving the physicochemical and pharmacokinetic properties of vemurafenib through cocrystallization strategy. Journal of Drug Delivery Science and Technology, 2022, 70, 103230.	3.0	2