Michael Buszczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The homeostatic regulation of ribosome biogenesis. Seminars in Cell and Developmental Biology, 2023, 136, 13-26.	5.0	18
2	Msl3 promotes germline stem cell differentiation in female <i>Drosophila</i> . Development (Cambridge), 2022, 149, .	2.5	17
3	Labeling of heterochronic ribosomes reveals C1ORF109 and SPATA5 control a late step in human ribosome assembly. Cell Reports, 2022, 38, 110597.	6.4	11
4	Importin-9 regulates chromosome segregation and packaging in <i>Drosophila</i> germ cells. Journal of Cell Science, 2021, 134, .	2.0	18
5	Variants in GCNA, X-linked germ-cell genome integrity gene, identified in men with primary spermatogenic failure. Human Genetics, 2021, 140, 1169-1182.	3.8	27
6	The <i>Drosophila</i> ribosome protein S5 paralog RpS5b promotes germ cell and follicle cell differentiation during oogenesis. Development (Cambridge), 2021, 148, .	2.5	19
7	The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Frontiers in Cell and Developmental Biology, 2021, 9, 710186.	3.7	27
8	GCNA Preserves Genome Integrity and Fertility Across Species. Developmental Cell, 2020, 52, 38-52.e10.	7.0	53
9	Inhibition of the de novo pyrimidine biosynthesis pathway limits ribosomal RNA transcription causing nucleolar stress in glioblastoma cells. PLoS Genetics, 2020, 16, e1009117.	3.5	38
10	Title is missing!. , 2020, 16, e1009117.		0
11	Title is missing!. , 2020, 16, e1009117.		0
12	Title is missing!. , 2020, 16, e1009117.		0
13	Title is missing!. , 2020, 16, e1009117.		0
14	Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nature Communications, 2019, 10, 2300.	12.8	218
15	Autophagy Keeps the Balance in Tissue Homeostasis. Developmental Cell, 2019, 49, 499-500.	7.0	8
16	JmjC domain proteins modulate circadian behaviors and sleep in Drosophila. Scientific Reports, 2018, 8, 815.	3.3	30
17	Specialized Intercellular Communications via Cytonemes and Nanotubes. Annual Review of Cell and Developmental Biology, 2018, 34, 59-84.	9.4	70
18	Alcoholâ€Induced Behaviors Require a Subset of <i>Drosophila</i> JmjCâ€Domain Histone Demethylases in the Nervous System. Alcoholism: Clinical and Experimental Research, 2017, 41, 2015-2024.	2.4	20

MICHAEL BUSZCZAK

#	Article	IF	CITATIONS
19	Systematic discovery of genetic modulation by Jumonji histone demethylases in Drosophila. Scientific Reports, 2017, 7, 5240.	3.3	38
20	Live-Cell Imaging of the Adult Drosophila Ovary Using Confocal Microscopy. Methods in Molecular Biology, 2017, 1463, 85-91.	0.9	3
21	<i>Drosophila CG2469</i> Encodes a Homolog of Human CTR9 and Is Essential for Development. G3: Genes, Genomes, Genetics, 2016, 6, 3849-3857.	1.8	14
22	The Wnt pathway limits BMP signaling outside of the germline stem cell niche in Drosophila ovaries. Developmental Biology, 2016, 417, 50-62.	2.0	49
23	Signaling by Cellular Protrusions: Keeping the Conversation Private. Trends in Cell Biology, 2016, 26, 526-534.	7.9	59
24	Keeping stem cells under control: New insights into the mechanisms that limit nicheâ€stem cell signaling within the reproductive system. Molecular Reproduction and Development, 2016, 83, 675-683.	2.0	11
25	Repression of Pumilio Protein Expression by Rbfox1 Promotes Germ Cell Differentiation. Developmental Cell, 2016, 36, 562-571.	7.0	84
26	Nanotubes mediate niche–stem-cell signalling in the Drosophila testis. Nature, 2015, 523, 329-332.	27.8	179
27	Lsd1 Restricts the Number of Germline Stem Cells by Regulating Multiple Targets in Escort Cells. PLoS Genetics, 2014, 10, e1004200.	3.5	58
28	Changes in rRNA Transcription Influence Proliferation and Cell Fate Within a Stem Cell Lineage. Science, 2014, 343, 298-301.	12.6	172
29	A Competitive Cell Fate Switch. Developmental Cell, 2014, 31, 261-262.	7.0	2
30	Cellular Differences in Protein Synthesis Regulate Tissue Homeostasis. Cell, 2014, 159, 242-251.	28.9	177
31	p53 activity is selectively licensed in the Drosophila stem cell compartment. ELife, 2014, 3, e01530.	6.0	56
32	Recombineering Homologous Recombination Constructs in Drosophila . Journal of Visualized Experiments, 2013, , e50346.	0.3	9
33	Mei-P26 Cooperates with Bam, Bgcn and Sxl to Promote Early Germline Development in the Drosophila Ovary. PLoS ONE, 2013, 8, e58301.	2.5	58
34	Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development (Cambridge), 2012, 139, 1547-1556.	2.5	62
35	Similarities of Drosophila rab GTPases Based on Expression Profiling: Completion and Analysis of the rab-Gal4 Kit. PLoS ONE, 2012, 7, e40912.	2.5	23
36	Finding a niche: studies from the Drosophila ovary. Stem Cell Research and Therapy, 2011, 2, 45.	5.5	61

MICHAEL BUSZCZAK

#	Article	IF	CITATIONS
37	Systematic Discovery of Rab GTPases with Synaptic Functions in Drosophila. Current Biology, 2011, 21, 1704-1715.	3.9	122
38	Loss of lysine-specific demethylase 1 nonautonomously causes stem cell tumors in the <i>Drosophila</i> ovary. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7064-7069.	7.1	82
39	<i>Drosophila</i> Ataxin 2-binding protein 1 marks an intermediate step in the molecular differentiation of female germline cysts. Development (Cambridge), 2010, 137, 3167-3176.	2.5	42
40	<i>Drosophila</i> Stem Cells Share a Common Requirement for the Histone H2B Ubiquitin Protease Scrawny. Science, 2009, 323, 248-251.	12.6	113
41	New components of the Drosophila fusome suggest it plays novel roles in signaling and transport. Developmental Biology, 2008, 317, 59-71.	2.0	97
42	The Carnegie Protein Trap Library: A Versatile Tool for Drosophila Developmental Studies. Genetics, 2007, 175, 1505-1531.	2.9	529
43	Exploring Strategies for Protein Trapping in Drosophila. Genetics, 2007, 175, 1089-1104.	2.9	149
44	The Drosophila melanogaster Cajal body. Journal of Cell Biology, 2006, 172, 875-884.	5.2	176
45	Searching Chromatin for Stem Cell Identity. Cell, 2006, 125, 233-236.	28.9	83
46	Nuclear bodies in the Drosophila germinal vesicle. Chromosome Research, 2006, 14, 465-475.	2.2	52
47	The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes and Development, 2006, 20, 977-989.	5.9	63
48	Efficient Protein Trafficking Requires Trailer Hitch, a Component of a Ribonucleoprotein Complex Localized to the ER in Drosophila. Developmental Cell, 2005, 9, 675-685.	7.0	147
49	Dcas Is Required for importin-α3 Nuclear Export and Mechano-Sensory Organ Cell Fate Specification in Drosophila. Developmental Biology, 2002, 244, 396-406.	2.0	33
50	Insect metamorphosis: Out with the old, in with the new. Current Biology, 2000, 10, R830-R833.	3.9	82
51	Drosophila metamorphosis: The only way is USP?. Current Biology, 1998, 8, R879-R882.	3.9	32