
Sonia Lanzalaco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6513151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combining 2D organic and 1D inorganic nanoblocks to develop free-standing hybrid nanomembranes for conformable biosensors. Journal of Nanostructure in Chemistry, 2023, 13, 507-517.	9.1	3
2	H2O2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. Journal of Hazardous Materials, 2022, 423, 127005.	12.4	38
3	Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid). Applied Surface Science, 2022, 597, 153623.	6.1	13
4	Dual-Responsive Polypropylene Meshes Actuating as Thermal and SERS Sensors. ACS Biomaterials Science and Engineering, 2022, 8, 3329-3340.	5.2	10
5	Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3Dâ€Printed Polylactic Acid. Advanced Engineering Materials, 2021, 23, 2100002.	3.5	10
6	Plasmaâ€Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing. Advanced Healthcare Materials, 2021, 10, e2100425.	7.6	7
7	Immobilization of glucose oxidase on plasma-treated polyethylene for non-invasive glucose detection. Journal of Electroanalytical Chemistry, 2021, 895, 115509.	3.8	11
8	Recycled Low-Density Polyethylene for Noninvasive Glucose Monitoring: A Proposal for Plastic Recycling that Adds Technological Value. ACS Sustainable Chemistry and Engineering, 2020, 8, 12554-12560.	6.7	11
9	Chitosan-Derived Nitrogen-Doped Carbon Electrocatalyst for a Sustainable Upgrade of Oxygen Reduction to Hydrogen Peroxide in UV-Assisted Electro-Fenton Water Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 14425-14440.	6.7	78
10	Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability. Journal of Materials Chemistry B, 2020, 8, 8864-8877.	5.8	14
11	Polymers and Plastics Modified Electrodes for Biosensors: A Review. Molecules, 2020, 25, 2446.	3.8	23
12	Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable. Advanced Functional Materials, 2020, 30, 2004145.	14.9	22
13	Polypropylene mesh for hernia repair with controllable cell adhesion/de-adhesion properties. Journal of Materials Chemistry B, 2020, 8, 1049-1059.	5.8	29
14	The mechanism of adhesion and graft polymerization of a PNIPAAm thermoresponsive hydrogel to polypropylene meshes. Soft Matter, 2019, 15, 3432-3442.	2.7	24
15	Flexible Electrodes for Supercapacitors Based on the Supramolecular Assembly of Biohydrogel and Conducting Polymer. Journal of Physical Chemistry C, 2018, 122, 1078-1090.	3.1	47
16	Prototyping flexible supercapacitors produced with biohydrogel. Materials Today Communications, 2018, 16, 60-70.	1.9	11
17	Cationic ionene as an n-dopant agent of poly(3,4-ethylenedioxythiophene). Physical Chemistry Chemical Physics, 2018, 20, 9855-9864.	2.8	9
18	lsomeric cationic ionenes as n-dopant agents of poly(3,4-ethylenedioxythiophene) for <i>in situ</i> gelation. Soft Matter, 2018, 14, 6374-6385.	2.7	8

SONIA LANZALACO

#	Article	IF	CITATIONS
19	Facile crosslinking of poly(vinylpyrrolidone) by electro-oxidation with IrO2-based anode under potentiostatic conditions. Journal of Applied Electrochemistry, 2018, 48, 1343-1352.	2.9	21
20	Synthesis of polymer nanogels by electro-Fenton process: investigation of the effect of main operation parameters. Electrochimica Acta, 2017, 246, 812-822.	5.2	57
21	Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process "Living―in the Presence of Fluorinated Initiators?. Macromolecules, 2017, 50, 192-202.	4.8	71
22	Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels, 2017, 3, 36.	4.5	268
23	Crosslinking of poly(vinylpyrrolidone) activated by electrogenerated hydroxyl radicals: A first step towards a simple and cheap synthetic route of nanogel vectors. Electrochemistry Communications, 2016, 62, 64-68.	4.7	48
24	Sterilization of macroscopic poly(l-lactic acid) porous scaffolds with dense carbon dioxide: Investigation of the spatial penetration of the treatment and of its effect on the properties of the matrix. Journal of Supercritical Fluids, 2016, 111, 83-90.	3.2	16
25	Effect of interfacial area on heterogeneous free radical grafting of vinyl monomers in supercritical carbon dioxide: Grafting of acrylic acid on poly(vinylidenefluoride) nanoparticles. Journal of Applied Polymer Science, 2015, 132, .	2.6	Ο
26	Utilization of poly(vinylchloride) and poly(vinylidenefluoride) as macroinitiators for <scp>ATRP</scp> polymerization of hydroxyethyl methacrylate: Electroanalytical and graftâ€copolymerization studies. Journal of Polymer Science Part A, 2015, 53, 2524-2536.	2.3	10