FÃ;bia Castro Cassanjes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6512971/publications.pdf

Version: 2024-02-01

394421 454955 39 921 19 30 citations h-index g-index papers 39 39 39 825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spherulitic crystallization of quartz-like GeO2 and correlated second harmonic generation in sodium tantalum germanate glasses. Journal of Alloys and Compounds, 2021, 877, 160245.	5.5	2
2	Multicolor tunable and NIR broadband emission from rare-earth-codoped tantalum germanate glasses and nanostructured glass-ceramics. Journal of Luminescence, 2021, 239, 118357.	3.1	8
3	Crystallization of bronze-like perovskite in potassium tantalum germanate glasses: Glass ceramic preparation and its optical properties. Optical Materials, 2021, 122, 111803.	3.6	3
4	Phosphate glasses with high tantalum oxide contents: Thermal, structural and optical properties. Materials Chemistry and Physics, 2020, 239, 121996.	4.0	12
5	Transparent glass and glassâ€ceramic in the binary system NaPO ₃ ‶a ₂ O ₅ . Journal of the American Ceramic Society, 2020, 103, 1647-1655.	3.8	10
6	High tantalum oxide content in Eu3+-doped phosphate glass and glass-ceramics for photonic applications. Journal of Alloys and Compounds, 2020, 842, 155853.	5 . 5	22
7	Effect of alkaline modifiers on the structural, optical and crystallization properties of niobium germanate glasses and glass-ceramics. Optical Materials, 2020, 105, 109866.	3.6	7
8	Er3+-doped niobium alkali germanate glasses and glass-ceramics: NIR and visible luminescence properties. Journal of Non-Crystalline Solids, 2019, 521, 119492.	3.1	23
9	Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications. Journal of Luminescence, 2019, 213, 224-234.	3.1	22
10	Thermal and spectroscopic properties studies of Er3+-doped and Er3+/Yb3+-codoped niobium germanate glasses for optical applications. Journal of Luminescence, 2019, 205, 487-494.	3.1	29
11	High niobium oxide content in germanate glasses: Thermal, structural, and optical properties. Journal of the American Ceramic Society, 2018, 101, 220-230.	3.8	29
12	Multifunctional possible application of the Er3+/Yb3+-coped Al2O3 prepared by recyclable precursor (aluminum can) and also by sol-gel process. Optical Materials, 2018, 84, 504-513.	3.6	4
13	Alkali metal tantalum germanate glasses and glass-ceramics formation. Journal of Non-Crystalline Solids, 2018, 499, 401-407.	3.1	10
14	Crystallization of Anatase TiO2 in Niobium Potassium Phosphate Glasses. Materials Research, 2017, 20, 502-508.	1.3	8
15	Thermal, structural and optical properties of new TeO2Sb2O3GeO2 ternary glasses. Optical Materials, 2016, 62, 95-103.	3. 6	11
16	Thermal, Structural, and Crystallization Properties of New Tantalum Alkaliâ€Germanate Glasses. Journal of the American Ceramic Society, 2015, 98, 2086-2093.	3.8	19
17	Crystallization in Lead Tungsten Fluorophosphate Glasses. Materials Research, 2015, 18, 228-232.	1.3	5
18	Thermal, Structural and Crystallization Study of Niobium Potassium Phosphate Glasses. Materials Research, 2015, 18, 13-16.	1.3	12

#	Article	IF	Citations
19	Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses. Optical Materials, 2015, 49, 249-254.	3.6	12
20	Thermal and structural properties of tantalum alkali-phosphate glasses. Journal of Non-Crystalline Solids, 2014, 402, 44-48.	3.1	21
21	Thermal and structural study of glasses in the binary system TeO2–Pb(PO3)2. Journal of Non-Crystalline Solids, 2013, 379, 180-184.	3.1	4
22	Crystallization behavior of a barium titanate tellurite glass doped with Eu3+ and Er3+. Optical Materials, 2013, 35, 1141-1145.	3.6	30
23	Glasses and glass-ceramics in the oxyfluoride ternary system Pb(PO3)2-WO3-PbF2. Journal of Non-Crystalline Solids, 2011, 357, 3345-3350.	3.1	11
24	Thermal, structural and optical properties of new tungsten lead–pyrophosphate glasses. Optical Materials, 2011, 33, 1862-1866.	3.6	25
25	Structural study of glasses in the binary system NaPO3–MoO3 by X-ray absorption spectroscopy at the Mo K and L3 edges. Materials Chemistry and Physics, 2010, 120, 501-504.	4.0	7
26	Crystallization of monoclinic WO3 in tungstate fluorophosphate glasses. Journal of Non-Crystalline Solids, 2009, 355, 441-446.	3.1	38
27	Crystallization study of molybdate phosphate glasses by thermal analysis. Journal of Non-Crystalline Solids, 2009, 355, 2279-2284.	3.1	8
28	Redox Behavior of Molybdenum and Tungsten in Phosphate Glasses. Journal of Physical Chemistry B, 2008, 112, 4481-4487.	2.6	80
29	Energy transfer between Tm3+ and Er3+ ions in a TeO2-based glass pumped at diode laser wavelength. Journal of Non-Crystalline Solids, 2007, 353, 94-101.	3.1	26
30	Local order around tungsten atoms in tungstate fluorophosphate glasses by X-ray absorption spectroscopy. Journal of Non-Crystalline Solids, 2005, 351, 3644-3648.	3.1	35
31	Red–green–blue upconversion emission and energy-transfer between Tm 3+ and Er 3+ ions in tellurite glasses excited at 1.064 μm. Journal of Solid State Chemistry, 2003, 171, 278-281.	2.9	74
32	Optical properties and frequency upconversion fluorescence in a Tm3+ -doped alkali niobium tellurite glass. Journal of Applied Physics, 2003, 93, 3259-3263.	2.5	37
33	Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions. Journal of Applied Physics, 2002, 92, 6337-6339.	2.5	91
34	Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064 \hat{l} /4m. Journal of Chemical Physics, 2002, 116, 6772-6776.	3.0	43
35	Infrared-to-visible frequency upconversion in Pr3+/Yb3+- and Er3+/Yb3+-codoped tellurite glasses. Journal of Alloys and Compounds, 2002, 344, 304-307.	5.5	43
36	Energy upconversion luminescence in neodymium-doped tellurite glass. Journal of Alloys and Compounds, 2002, 346, 282-284.	5.5	39

#	Article	IF	CITATIONS
37	Time dependence and energy-transfer mechanisms in Tm3+, Ho3+ and Tm3+–Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+. Journal of Non-Crystalline Solids, 2001, 284, 217-222.	3.1	15
38	Efficient energy upconversion emission in Tm3+/Yb3+-codoped TeO2-based optical glasses excited at $1.064\ \hat{l}\frac{1}{4}$ m. Journal of Applied Physics, 2001, 90, 6550-6552.	2.5	23
39	Raman scattering, differential scanning calorimetry and Nd3+ spectroscopy in alkali niobium tellurite glasses. Journal of Non-Crystalline Solids, 1999, 247, 58-63.	3.1	23