Ganapati D Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6512621/publications.pdf

Version: 2024-02-01

304 papers 10,280 citations

52 h-index 85 g-index

309 all docs 309 docs citations

309 times ranked 8735 citing authors

#	Article	IF	CITATIONS
1	Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Materials, 1999, 33, 1-48.	4.4	618
2	Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse. Industrial & Engineering Chemistry Research, 2014, 53, 11571-11592.	3.7	586
3	Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 2015, 162, 306-325.	7.8	427
4	Heterogeneous Catalysis in Esterification Reactions: Preparation of Phenethyl Acetate and Cyclohexyl Acetate by Using a Variety of Solid Acidic Catalysts. Industrial & Engineering Chemistry Research, 1994, 33, 2198-2208.	3.7	196
5	Kinetic modeling of immobilized-lipase catalyzed transesterification of n-octanol with vinyl acetate in non-aqueous media. Enzyme and Microbial Technology, 2003, 32, 783-789.	3.2	172
6	Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope. Industrial & Engineering Chemistry Research, 2021, 60, 89-113.	3.7	151
7	Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Applied Catalysis B: Environmental, 2014, 147, 293-301.	20.2	146
8	Preparation of a novel catalyst UDCaT-5: enhancement in activity of acid-treated zirconiaâ€"effect of treatment with chlorosulfonic acid vis-Ã-vis sulfuric acid. Journal of Catalysis, 2004, 224, 218-223.	6.2	131
9	Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases. Biochemical Engineering Journal, 2003, 16, 245-252.	3.6	128
10	Synergism of Clay and Heteropoly Acids as Nano-Catalysts for the Development of Green Processes with Potential Industrial Applications. Catalysis Surveys From Asia, 2005, 9, 117-137.	2.6	126
11	Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 113-119.	1.8	122
12	Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chemical Engineering Science, 2004, 59, 373-383.	3.8	119
13	Enzyme-catalysed optical resolution of mandelic acid via RS(â^")-methyl mandelate in non-aqueous media. Biochemical Engineering Journal, 2004, 19, 101-107.	3.6	108
14	Biobased Green Process: Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethyl Furan under Mild Conditions Using Pd-Cs _{2.5} H _{0.5} PW ₁₂ O ₄₀ /K-10 Clay. ACS Sustainable Chemistry and Engineering, 2016, 4, 4113-4123.	6.7	105
15	Selective decomposition of cumene hydroperoxide into phenol and acetone by a novel cesium substituted heteropolyacid on clay. Applied Catalysis A: General, 2003, 244, 341-357.	4.3	104
16	Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochemistry, 2012, 47, 496-502.	3.7	102
17	Kinetics of Alkylation ofp-Cresol with Isobutylene Catalyzed by Sulfated Zirconia. Industrial & Engineering Chemistry Research, 1996, 35, 721-731.	3.7	91
18	Synergism between microwave and enzyme catalysis in intensification of reactions and selectivities: transesterification of methyl acetoacetate with alcohols. Journal of Molecular Catalysis A, 2004, 223, 51-56.	4.8	90

#	Article	IF	CITATIONS
19	Synthesis of ethyl levulinate as fuel additives using heterogeneous solid superacidic catalysts: Efficacy and kinetic modeling. Chemical Engineering Journal, 2014, 243, 556-563.	12.7	90
20	Kinetic Modeling of Immobilized Lipase Catalysis in Synthesis of <i>n</i> -Butyl Levulinate. Industrial & Levulinate. Indu	3.7	89
21	Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bio-ethanol. Applied Clay Science, 2011, 53, 263-271.	5.2	87
22	Magnetically separable sulfated zirconia as highly active acidic catalysts for selective synthesis of ethyl levulinate from furfuryl alcohol. Green Chemistry, 2017, 19, 963-976.	9.0	87
23	The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-Ã-vis sustainability and the environment. Clean Technologies and Environmental Policy, 2020, 22, 1757-1774.	4.1	86
24	Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Solvothermal Carbonization for Esterification and Unsymmetrical Ether Formation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1963-1973.	6.7	84
25	Alkylation of phenol with methyl-tert-butyl ether and tert-butanol over solid acids: efficacies of clay-based catalysts. Applied Catalysis A: General, 2002, 236, 129-147.	4.3	83
26	Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: Transesterification in non-aqueous medium. Microporous and Mesoporous Materials, 2005, 86, 215-222.	4.4	82
27	Perspective of dimethyl ether as fuel: Part I. Catalysis. Journal of CO2 Utilization, 2019, 32, 299-320.	6.8	81
28	Enzymatic synthesis of perlauric acid using Novozym 435. Biochemical Engineering Journal, 2002, 10, 93-101.	3.6	80
29	Development of a green process for poly-α-olefin based lubricants. Green Chemistry, 2002, 4, 528-540.	9.0	76
30	Inversion of the relative reactivities and selectivities of benzyl chloride and benzyl alcohol in friedel-crafts alkylation with toluene using different solid acid catalysts: An adsorption related phenomenon. Tetrahedron Letters, 1993, 34, 529-532.	1.4	75
31	Novelties of synthesis of acetoveratrone using heteropoly acid supported on hexagonal mesoporous silica. Microporous and Mesoporous Materials, 2003, 63, 85-96.	4.4	74
32	Novel synthesis of Ru/OMS catalyst by solvent-free method: Selective hydrogenation of levulinic acid to Î ³ -valerolactone in aqueous medium and kinetic modelling. Chemical Engineering Journal, 2018, 334, 2488-2499.	12.7	74
33	Kinetics of the n-Butoxylation of p-Chloronitrobenzene under Liquidâ^'Liquidâ^'Liquid Phase Transfer Catalysis. Industrial & Engineering Chemistry Research, 1999, 38, 2245-2253.	3.7	73
34	A green process for glycerol valorization to glycerol carbonate over heterogeneous hydrotalcite catalyst. Catalysis Today, 2014, 237, 47-53.	4.4	73
35	Kinetic and Mechanistic Investigation of Microwave-Assisted Lipase Catalyzed Synthesis of Citronellyl Acetate. Industrial & Engineering Chemistry Research, 2009, 48, 7915-7922.	3.7	69
36	Hydrogenolysis of Glycerol to 1,2-Propanediol over Nano-Fibrous Ag-OMS-2 Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 1549-1562.	3.7	66

#	Article	IF	CITATIONS
37	Microwave assisted lipase catalyzed synthesis of isoamyl myristate in solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 2012, 83, 16-22.	1.8	64
38	Selective Hydrogenation of $\hat{l}\pm,\hat{l}^2\hat{a}\in U$ nsaturated Aldehydes and Ketones using Novel Manganese Oxide and Platinum Supported on Manganese Oxide Octahedral Molecular Sieves as Catalysts. ChemCatChem, 2013, 5, 506-512.	3.7	62
39	Hybrid nanostructured coatings for corrosion protection of base metals: a sustainability perspective. Materials Research Express, 2015, 2, 032001.	1.6	62
40	Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. Journal of the Indian Chemical Society, 2021, 98, 100002.	2.8	62
41	Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 34-39.	1.8	61
42	Cascade Engineered Synthesis of \hat{I}^3 -Valerolactone, 1,4-Pentanediol, and 2-Methyltetrahydrofuran from Levulinic Acid Using Pd \hat{I}^3 -Caul/2rO ₂ Catalyst in Water as Solvent. ACS Sustainable Chemistry and Engineering, 2015, 3, 2619-2630.	6.7	61
43	Lipase catalyzed transesterification of methyl acetoacetate with n-butanol. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 107-113.	1.8	59
44	Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in Pechmann condensation of resorcinol with ethyl acetoacetate. Journal of Catalysis, 2012, 292, 99-110.	6.2	58
45	Process efficacy and novelty of titania membrane prepared by polymeric sol–gel method in removal of chromium(VI) by surfactant enhanced microfiltration. Chemical Engineering Journal, 2014, 255, 483-491.	12.7	58
46	Cu promoted Ni-Co/hydrotalcite catalyst for improved hydrogen production in comparison with several modified Ni-based catalysts via steam reforming of ethanol. International Journal of Hydrogen Energy, 2017, 42, 11321-11332.	7.1	58
47	Synergism between microwave irradiation and enzyme catalysis in transesterification of ethyl-3-phenylpropanoate with n-butanol. Bioresource Technology, 2012, 109, 1-6.	9.6	57
48	Isomerization of Citronellal to Isopulegol Using Eclectically Engineered Sulfated Zirconiaâ^'Carbon Molecular Sieve Composite Catalysts, UDCaT-2. Langmuir, 2000, 16, 4072-4079.	3.5	55
49	Novel Efficient Mesoporous Solid Acid Catalyst UDCaT-4:Â Dehydration of 2-Propanol and Alkylation of Mesitylene. Langmuir, 2004, 20, 11607-11619.	3.5	55
50	Aldol condensation of benzaldehyde with heptanal to jasminaldehyde over novel Mg–Al mixed oxide on hexagonal mesoporous silica. Journal of Molecular Catalysis A, 2012, 355, 142-154.	4.8	55
51	Kinetics of reaction of benzyl chloride with sodium acetate/benzoate: phase transfer catalysis in solid-liquid system. Industrial & Engineering Chemistry Process Design and Development, 1981, 20, 385-390.	0.6	54
52	Intensification of enzymatic synthesis of propylene glycol monolaurate from 1,2-propanediol and lauric acid under microwave irradiation: Kinetics of forward and reverse reactions. Enzyme and Microbial Technology, 2006, 38, 814-820.	3.2	53
53	Alkylation of phenol with cyclohexene over solid acids: Insight in selectivity of O- versus C-alkylation. Applied Catalysis A: General, 2005, 286, 61-70.	4.3	52
54	Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent. Chemosphere, 2014, 117, 760-765.	8.2	52

#	Article	IF	CITATIONS
55	Graphene oxide and functionalized multi walled carbon nanotubes as epoxy curing agents: a novel synthetic approach to nanocomposites containing active nanostructured fillers. RSC Advances, 2014, 4, 49264-49272.	3.6	51
56	Friedel–Crafts benzoylation of p-xylene over clay supported catalysts: novelty of cesium substituted dodecatungstophosphoric acid on K-10 clay. Applied Catalysis A: General, 2003, 240, 53-69.	4.3	50
57	Kinetics of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from Candida antarctica. Biochemical Engineering Journal, 2004, 17, 57-63.	3.6	49
58	Ni–Cu and Ni–Co Supported on La–Mg Based Metal Oxides Prepared by Coprecipitation and Impregnation for Superior Hydrogen Production via Steam Reforming of Glycerol. Industrial & Engineering Chemistry Research, 2018, 57, 4785-4797.	3.7	49
59	Kinetics of Friedel–Crafts benzoylation of veratrole with benzoic anhydride using Cs2.5H0.5PW12O40/K-10 solid acid catalyst. Chemical Engineering Journal, 2015, 266, 64-73.	12.7	46
60	Rapid In Situ Encapsulation of Laccase into Metalâ€Organic Framework Support (ZIFâ€8) under Biocompatible Conditions. ChemistrySelect, 2018, 3, 4669-4675.	1.5	46
61	Transesterification of Edible and Nonedible Vegetable Oils with Alcohols over Heteropolyacids Supported on Acid-Treated Clay. Industrial & Engineering Chemistry Research, 2009, 48, 9408-9415.	3.7	45
62	Selective hydrogenation of acetophenone to 1-phenyl ethanol over nanofibrous Ag-OMS-2 catalysts. Catalysis Today, 2012, 198, 330-337.	4.4	45
63	Lipase catalyzed kinetic resolution of $(\hat{A}\pm)$ -1- $(1$ -naphthyl) ethanol under microwave irradiation. Journal of Molecular Catalysis B: Enzymatic, 2012, 81, 58-65.	1.8	44
64	PVA/chitosan–glutaraldehyde cross-linked nitrile hydratase as reusable biocatalyst for conversion of nitriles to amides. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 115-121.	1.8	43
65	Selective hydrogenation of bio-based 5-hydroxymethyl furfural to 2,5-dimethylfuran over magnetically separable Fe-Pd/C bimetallic nanocatalyst. Molecular Catalysis, 2019, 465, 1-15.	2.0	43
66	Kinetics and Mechanism of Selective Monoacylation of Mesitylene. Industrial & Engineering Chemistry Research, 2002, 41, 5565-5575.	3.7	42
67	Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of RSâ€(±) Tj ETQq1 1 C	0.784314 r 3.2	gBT/Overlac
68	Chitosan-based membranes preparation and applications: Challenges and opportunities. Journal of the Indian Chemical Society, 2021, 98, 100017.	2.8	42
69	Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst. Catalysis Today, 2018, 309, 153-160.	4.4	40
70	Claisenâ€Schmidt Condensation using Green Catalytic Processes: A Critical Review. ChemistrySelect, 2020, 5, 9059-9085.	1.5	40
71	Title is missing!. Catalysis Letters, 1999, 62, 49-52.	2.6	39
72	Novelties of azobenzene synthesis via selective hydrogenation of nitrobenzene over nano-fibrous Ag-OMS-2 – Mechanism and kinetics. Chemical Engineering Journal, 2013, 221, 500-511.	12.7	38

#	Article	IF	Citations
73	Application of microwave assisted three phase partitioning method for purification of laccase from Trametes hirsuta. Process Biochemistry, 2018, 65, 220-227.	3.7	38
74	Green Synthesis of Furfural Acetone by Solvent-Free Aldol Condensation of Furfural with Acetone over La ₂ O ₃ –MgO Mixed Oxide Catalyst. Industrial & Dineering Chemistry Research, 2019, 58, 16096-16105.	3.7	38
75	Selective Dehydration of Glycerol to Acrolein: Development of Efficient and Robust Solid Acid Catalyst MUICaT-5. Industrial & Engineering Chemistry Research, 2013, 52, 10133-10144.	3.7	37
76	Microwave Irradiated Immobilized Lipase Catalyzed Synthesis of Alkyl Benzoate Esters by Transesterification: Mechanism and Kinetic Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 8706-8713.	3.7	37
77	Novel aluminium exchanged dodecatungstophosphoric acid supported on K-10 clay as catalyst: benzoylation of diphenyloxide with benzoic anhydride. RSC Advances, 2016, 6, 49091-49100.	3.6	37
78	Aldol Condensation of 5-Hydroxymethylfurfural to Fuel Precursor over Novel Aluminum Exchanged-DTP@ZIF-8. ACS Sustainable Chemistry and Engineering, 2019, 7, 16215-16224.	6.7	37
79	Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: Development of membrane, characterization and kinetics of adsorption. Journal of the Indian Chemical Society, 2022, 99, 100263.	2.8	36
80	Synthesis of cinnamyl benzoate over novel heteropoly acid encapsulated ZIF-8. Applied Catalysis A: General, 2018, 560, 54-65.	4.3	35
81	Role of benzyl ether in the inversion of reactivities in Friedel-Crafts benzylation of toluene by benzyl chloride and benzyl alcohol. Tetrahedron Letters, 1996, 37, 5405-5408.	1.4	34
82	Development of a Novel Mesoporous Catalyst UDCaT-6:  Kinetics of Synthesis of tert-Amyl Methyl Ether (TAME) from tert-Amyl Alcohol and Methanol. Journal of Physical Chemistry A, 2004, 108, 9557-9566.	2.5	34
83	Novelties of reaction in the middle liquid phase in tri-liquid phase transfer catalysis: Kinetics of selective O-alkylation of vanillin with benzyl chloride. Applied Catalysis A: General, 2005, 287, 267-275.	4.3	34
84	Synergism of microwave irradiation and enzyme catalysis in synthesis of isoniazid. Journal of Chemical Technology and Biotechnology, 2007, 82, 964-970.	3.2	34
85	Hydrogenation of Styrene Oxide to 2-Phenyl Ethanol over Polyurea Microencapsulated Mono- and Bimetallic Nanocatalysts: Activity, Selectivity, and Kinetic Modeling. Industrial & Engineering Chemistry Research, 2013, 52, 4027-4039.	3.7	34
86	Novelties of low energy microwave irradiation in tri-phase vis-Ã-vis bi-liquid phase-transfer catalysis in selective etherification of aromatic phenols. Catalysis Communications, 2006, 7, 325-330.	3.3	33
87	Selective synthesis of natural benzaldehyde by hydrolysis of cinnamaldehyde using novel hydrotalcite catalyst. Catalysis Today, 2013, 207, 162-169.	4.4	33
88	Insight into Microwave-Assisted Lipase Catalyzed Synthesis of Geranyl Cinnamate: Optimization and Kinetic Modeling. Applied Biochemistry and Biotechnology, 2015, 175, 2035-2049.	2.9	33
89	Enzymatic synthesis of isoniazid in non-aqueous medium. Enzyme and Microbial Technology, 2005, 36, 217-222.	3.2	32
90	Perspective of dimethyl ether as fuel: Part II- analysis of reactor systems and industrial processes. Journal of CO2 Utilization, 2019, 32, 321-338.	6.8	32

#	Article	IF	CITATIONS
91	Insight into esterification of eugenol to eugenol benzoate using a solid super acidic modified zirconia catalyst UDCaT-5. Chemical Engineering Journal, 2012, 192, 146-155.	12.7	31
92	Selective Synthesis of Hydrocinnamaldehyde over Bimetallic Ni–Cu Nanocatalyst Supported on Graphene Oxide. Industrial & Engineering Chemistry Research, 2018, 57, 9083-9093.	3.7	31
93	Methanol economy and net zero emissions: critical analysis of catalytic processes, reactors and technologies. Green Chemistry, 2021, 23, 8361-8405.	9.0	31
94	Synthesis of Geraniol Esters in a Continuous-Flow Packed-Bed Reactor of Immobilized Lipase: Optimization of Process Parameters and Kinetic Modeling. Applied Biochemistry and Biotechnology, 2018, 184, 630-643.	2.9	30
95	Case study on sustainability of textile wastewater treatment plant based on lifecycle assessment approach. Journal of Cleaner Production, 2020, 245, 118929.	9.3	30
96	Selective <i>O</i> -Alkylation of 2-Naphthol using Phosphonium-Based Ionic Liquid as the Phase Transfer Catalyst ^{â€} . Organic Process Research and Development, 2010, 14, 722-727.	2.7	29
97	Green etherification of bioglycerol with 1-phenyl ethanol over supported heteropolyacid. Clean Technologies and Environmental Policy, 2012, 14, 85-95.	4.1	29
98	La–Mg mixed oxide as a highly basic water resistant catalyst for utilization of CO ₂ in the synthesis of quinazoline-2,4(1H,3H)-dione. RSC Advances, 2016, 6, 111079-111089.	3.6	29
99	Synergism of microwave irradiation and enzyme catalysis in kinetic resolution of (R,S) -1-phenylethanol by cutinase from novel isolate Fusarium ICT SAC1. Biochemical Engineering Journal, 2017, 117, 121-128.	3.6	29
100	Atom economical benzylation of phenol with benzyl alcohol using 20 % (w/w)Cs 2.5 H 0.5 PW 12 O 40 supported on mesocellular foam silica (MCF) and its kinetics. Microporous and Mesoporous Materials, 2018, 263, 190-200.	4.4	29
101	Microwave assisted synthesis of 5-ethoxymethylfurfural in one pot from d-fructose by using deep eutectic solvent as catalyst under mild condition. Biomass and Bioenergy, 2018, 117, 38-43.	5.7	29
102	Single-Step Hydrogenolysis of Furfural to 1,2-Pentanediol Using a Bifunctional Rh/OMS-2 Catalyst. ACS Omega, 2019, 4, 1201-1214.	3.5	29
103	Single step synthesis of 4-hydroxybenzophenone via esterification and Fries rearrangement: Novelty of cesium substituted heteropoly acid supported on clay. Journal of Molecular Catalysis A, 2008, 292, 54-61.	4.8	28
104	Synthesis of carvacrol by Friedel–Crafts alkylation of <i>>o</i> àê€resol with isopropanol using superacidic catalyst UDCaTâ€5. Journal of Chemical Technology and Biotechnology, 2009, 84, 1499-1508.	3.2	28
105	Kinetic Modeling and Statistical Optimization of Lipase Catalyzed Enantioselective Resolution of (R,S)-2-pentanol. Industrial & Engineering Chemistry Research, 2011, 50, 12975-12983.	3.7	28
106	Enantioselective Enzymatic Hydrolysis of <i>rac-</i> Mandelonitrile to <i>R</i> Mandelamide by Nitrile Hydratase Immobilized on Poly(vinyl alcohol)/Chitosan–Glutaraldehyde Support. Industrial & Engineering Chemistry Research, 2014, 53, 7986-7991.	3.7	28
107	Innovative catalysis in Michael addition reactions for C-X bond formation. Molecular Catalysis, 2020, 485, 110814.	2.0	28
108	Novel Mesoporous Solid Superacidic Catalysts:Â Activity and Selectivity in the Synthesis of Thymol by Isopropylation ofm-Cresol with 2-Propanol over UDCaT-4, -5, and -6. Journal of Physical Chemistry A, 2005, 109, 11080-11088.	2.5	27

#	Article	IF	CITATIONS
109	Optimization and kinetic modeling of lipase catalyzed enantioselective N-acetylation of (\hat{A}_{\pm}) Tj ETQq1 1 0.78431 Biotechnology, 2011, 86, 739-748.	4 rgBT /O 3.2	verlock 10 T 27
110	Hydrothermal Synthesis of CuFe ₂ O ₄ Magnetic Nanoparticles as Active and Robust Catalyst for <i>Nâ€</i> >arylation of Indole and Imidazole with Aryl Halide. ChemistrySelect, 2017, 2, 2395-2405.	1.5	27
111	Selectivity engineered phase transfer catalysis in the synthesis of fine chemicals: reactions of p-chloronitrobenzene with sodium sulphide. Journal of Molecular Catalysis A, 2003, 200, 117-129.	4.8	26
112	Selectivity engineering in isopropylation of benzene to cumene over cesium substituted dodecatungstophoshoric acid on K-10 clay. Applied Catalysis A: General, 2004, 265, 153-159.	4.3	26
113	Selective engineering in O-alkylation of m-cresol with benzyl chloride using liquid–liquid–liquid phase transfer catalysis. Journal of Molecular Catalysis A, 2008, 288, 33-41.	4.8	26
114	Microwave assisted process intensification of lipase catalyzed transesterification of 1,2 propanediol with dimethyl carbonate for the green synthesis of propylene carbonate: Novelties of kinetics and mechanism of consecutive reactions. Chemical Engineering Journal, 2015, 281, 199-208.	12.7	26
115	Carbon Dioxide Mediated Novel Synthesis of Quinazoline-2,4(1H,3H)-dione in Water. Organic Process Research and Development, 2016, 20, 2067-2073.	2.7	26
116	Direct synthesis of dimethyl carbonate from methanol and carbon dioxide: A thermodynamic and experimental study. Journal of Supercritical Fluids, 2016, 117, 98-107.	3.2	26
117	Cu 2 O nanoparticles supported hydrothermal carbon microspheres as catalyst for propargylamine synthesis. Molecular Catalysis, 2018, 451, 209-219.	2.0	26
118	Noble metal promoted Ni–Cu/La2O3–MgO catalyst for renewable and enhanced hydrogen production via steam reforming of bio-based n-butanol: effect of promotion with Pt, Ru and Pd on catalytic activity and selectivity. Clean Technologies and Environmental Policy, 2019, 21, 1323-1339.	4.1	26
119	Selectivity engineering in multiphase transfer catalysis in the preparation of aromatic ethers. Journal of Molecular Catalysis A, 2004, 223, 93-100.	4.8	25
120	Friedel–Crafts acylation of anisole with propionic anhydride over mesoporous superacid catalyst UDCaT-5. Microporous and Mesoporous Materials, 2006, 96, 36-43.	4.4	25
121	Heteropolyacid supported on acidic clay: A novel efficient catalyst for alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8 aromatics. Journal of Molecular Catalysis A, 2008, 285, 155-161.	4.8	25
122	Selectivity engineering in the synthesis of value added chemicals: Oxidation of 1-octanol to 1-octanal over nano-fibrous Ag–OMS-2 catalysts. Chemical Engineering Research and Design, 2012, 90, 86-97.	5.6	25
123	Palladium Nanoparticles Supported Carbon Based Graphene Oxide Monolith as Catalyst for Sonogashira Coupling and Hydrogenation of Nitrobenzene and Alkenes. ChemistrySelect, 2016, 1, 3954-3965.	1.5	25
124	Heterogeneous cycloaddition of styrene oxide with carbon dioxide for synthesis of styrene carbonate using reusable lanthanum–zirconium mixed oxide as catalyst. Clean Technologies and Environmental Policy, 2018, 20, 345-356.	4.1	25
125	Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of dl-(A±)-3-phenyllactic acid. Applied Microbiology and Biotechnology, 2012, 96, 69-79.	3.6	24
126	Selectivity engineering of 4-phenoxyacetophenone by acylation of diphenyl ether with ion exchange resins: modeling of catalyst deactivation and remedies. Chemical Engineering Science, 2003, 58, 2573-2585.	3.8	23

#	Article	IF	CITATIONS
127	Fundamental analysis of microwave irradiated liquid–liquid phase transfer catalysis (MILL-PTC): Simultaneous measurement of rate and exchange equilibrium constants in selective O-alkylation of p-tert-butylphenol with benzyl chloride. Journal of Molecular Catalysis A, 2005, 236, 54-64.	4.8	23
128	Selectivity engineering of O-methylation of hydroxybenzenes with dimethyl carbonate using ionic liquid as catalyst. Reaction Chemistry and Engineering, 2016 , 1 , $330-339$.	3.7	23
129	One-pot synthesis of benzimidazole using DMF as a multitasking reagent in presence CuFe 2 O 4 as catalyst. Catalysis Today, 2018, 309, 51-60.	4.4	23
130	Effect of Supercritical CO ₂ as Reaction Medium for Selective Hydrogenation of Acetophenone to 1-Phenylethanol. ACS Omega, 2018, 3, 7124-7132.	3.5	23
131	Production of biofuel 2,5-dimethylfuran using highly efficient single-step selective hydrogenation of 5-hydroxymethylfurfural over novel Pd-Co/Al-Zr mixed oxide catalyst. Fuel, 2021, 290, 119947.	6.4	23
132	Synergism of Microwaves and Immobilized Enzyme Catalysis in Synthesis of Adipic Acid Esters in Nonaqueous Media. Synthetic Communications, 2005, 35, 1699-1705.	2.1	22
133	Lipase-catalyzed hydrazinolysis of phenyl benzoate: Kinetic modeling approach. Process Biochemistry, 2010, 45, 586-592.	3.7	22
134	Selective engineering using Mg–Al calcined hydrotalcite and microwave irradiation in mono-transesterification of diethyl malonate with cyclohexanol. Chemical Engineering Journal, 2013, 230, 547-557.	12.7	22
135	Kinetic resolution of (R,S)-α-tetralol catalyzed by crosslinked Candida antarctica lipase B enzyme supported on mesocellular foam: A nanoscale enzyme reactor approach. Journal of Molecular Catalysis B: Enzymatic, 2016, 132, 61-66.	1.8	22
136	Potassium modified La-Mg mixed oxide as active and selective catalyst for mono-methylation of phenylacetonitrile with dimethyl carbonate. Molecular Catalysis, 2017, 438, 66-75.	2.0	22
137	Process intensification by microwave irradiation in immobilized-lipase catalysis in solvent-free synthesis of ethyl valerate. Molecular Catalysis, 2018, 461, 34-39.	2.0	22
138	Solventless synthesis of cyclic carbonates by direct utilization of CO 2 using nanocrystalline lithium promoted magnesia. Molecular Catalysis, 2018, 451, 200-208.	2.0	22
139	Solventless triarylmethane synthesis via hydroxyalkylation of anisole with benzaldehyde by modified heteropoly acid on mesocellular foam silica (MCF). Molecular Catalysis, 2018, 455, 150-158.	2.0	22
140	Selectivity Engineering of Phase Transfer Catalyzed Alkylation of 2â€~-Hydroxyacetophenone: Enhancement in Rates and Selectivity by Creation of a Third Liquid Phase. Organic Process Research and Development, 2005, 9, 749-756.	2.7	21
141	Microwave assisted enzyme catalysis for synthesis of n-butyl dipheyl methyl mercapto acetate in non-aqueous media. Clean Technologies and Environmental Policy, 2007, 9, 281-287.	4.1	21
142	Insight into microwave assisted immobilized Candida antarctica lipase B catalyzed kinetic resolution of RS-(\hat{A}_{\pm})-ketorolac. Process Biochemistry, 2015, 50, 230-236.	3.7	21
143	Kinetic Resolution of (<i>R</i> , <i>S</i>)-α-Tetralol by Immobilized <i>Candida antarctica</i> Lipase B: Comparison of Packed-Bed over Stirred-Tank Batch Bioreactor. Industrial & Engineering Chemistry Research, 2017, 56, 1750-1757.	3.7	21
144	Insight into a catalytic process for simultaneous production of biodiesel and glycerol carbonate from triglycerides. Catalysis Today, 2018, 309, 161-171.	4.4	21

#	Article	IF	CITATIONS
145	Carbon Dioxide Reforming of Methane over Mesoporous Alumina Supported Ni(Co), Ni(Rh) Bimetallic, and Ni(CoRh) Trimetallic Catalysts: Role of Nanoalloying in Improving the Stability and Nature of Coking. Energy & Doking: Fuels, 2020, 34, 16433-16444.	5.1	21
146	Cascade engineered phase transfer catalysis: a novel concept in green chemistry. Clean Technologies and Environmental Policy, 2003, 6, 32-42.	4.1	20
147	Intensification of Rates and Selectivity Using Tri-liquid versus Bi-liquid Phase Transfer Catalysis:Â Insight into Reduction of 4-Nitro-o-xylene with Sodium Sulfide. Industrial & Engineering Chemistry Research, 2007, 46, 2951-2961.	3.7	20
148	Synthesis of <i>n</i> à€butyl acetamide over immobilized lipase. Journal of Chemical Technology and Biotechnology, 2009, 84, 420-426.	3.2	20
149	Selective hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea supported Pd–Cu catalyst in supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 59, 78-86.	3.2	20
150	Selectivity engineering of solid base catalyzed O-methylation of 2-naphthol with dimethyl carbonate to 2-methoxynaphthalene. Catalysis Today, 2013, 207, 180-190.	4.4	20
151	Comparative Studies of White-Rot Fungal Strains (<i>Trametes hirsuta</i> MTCC-1171 and) Tj ETQq1 1 0.784314 Ferulic Acid. ACS Omega, 2018, 3, 14858-14868.	rgBT /Ov	erlock 10 Ti 20
152	Synthesis of geranyl acetate by transesterification of geraniol with ethyl acetate over Candida antarctica lipase as catalyst in solventâ€free system. Flavour and Fragrance Journal, 2019, 34, 288-293.	2.6	20
153	Role of Third Phase in Intensification of Reaction Rates and Selectivity:  Phase-Transfer Catalyzed Synthesis of Benzyl Phenyl Ether. Industrial & Engineering Chemistry Research, 2007, 46, 8448-8458.	3.7	19
154	Microwave-Irradiated Synthesis of Nitrophen Using PEG 400 as Phase Transfer Catalyst and Solvent. Organic Process Research and Development, 2009, 13, 341-348.	2.7	19
155	Insight into microwave assisted enzyme catalysis in process intensification of reaction and selectivity: Kinetic resolution of (R,S)-flurbiprofen with alcohols. Molecular Catalysis, 2017, 440, 50-56.	2.0	19
156	Selective oxidation of methyl mandelate to methyl phenyl glyoxylate using liquid–liquid–liquid phase transfer catalysis. Chemical Engineering Journal, 2010, 156, 328-336.	12.7	18
157	Novelty of immobilized enzymatic synthesis of 3-ethyl-1,3-oxazolidin-2-one using 2-aminoalcohol and dimethyl carbonate: Mechanism and kinetic modeling of consecutive reactions. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 62-69.	1.8	18
158	Green approach in the sol–gel synthesis of defect free unsupported mesoporous alumina films. Microporous and Mesoporous Materials, 2016, 224, 43-50.	4.4	18
159	Design of tandem catalyst by co-immobilization of metal and enzyme on mesoporous foam for cascaded synthesis of (R)-phenyl ethyl acetate. Biochemical Engineering Journal, 2018, 129, 96-105.	3.6	18
160	n-Butyl levulinate synthesis using lipase catalysis: comparison of batch reactor versus continuous flow packed bed tubular microreactor. Journal of Flow Chemistry, 2018, 8, 97-105.	1.9	18
161	Interesterification of triglycerides with methyl acetate for the co-production biodiesel and triacetin using hydrotalcite as a heterogenous base catalyst. Catalysis Today, 2021, 375, 101-111.	4.4	18
162	Monoalkylation of biphenyl over modified heteropoly acids: Novelty of cesium substituted dodecatungstophosphoric acid supported on hexagonal mesoporous silica. Catalysis Today, 2009, 141, 130-137.	4.4	17

#	Article	IF	CITATIONS
163	Developing and testing a tool for sustainability assessment in an early process design phase $\hat{a} \in \text{``Case}$ study of formic acid production by conventional and carbon dioxide-based routes. Journal of Cleaner Production, 2017, 168, 1636-1651.	9.3	17
164	Biocatalytic resolution of (R,S)-styrene oxide using a novel epoxide hydrolase from red mung beans. Catalysis Today, 2018, 309, 236-241.	4.4	17
165	Process intensification and waste minimization in liquid–liquid–liquid phase transfer catalyzed selective synthesis of mandelic acid. Chemical Engineering Research and Design, 2012, 90, 1281-1291.	5.6	16
166	Modeling of microwave irradiated liquid–liquid–liquid (MILLL) phase transfer catalyzed green synthesis of benzyl thiocyanate. Chemical Engineering Journal, 2012, 179, 221-230.	12.7	16
167	Process intensification of immobilized lipase catalysis by microwave irradiation in the synthesis of 4-chloro-2-methylphenoxyacetic acid (MCPA) esters. Biochemical Engineering Journal, 2014, 90, 96-102.	3.6	16
168	Direct synthesis of formic acid from carbon dioxide and hydrogen: A thermodynamic and experimental study using poly-urea encapsulated catalysts. Chemical Engineering Journal, 2016, 285, 625-634.	12.7	16
169	Solvothermal Synthesis of CuFe ₂ O ₄ @rGO: Efficient Catalyst for Câ€O Cross Coupling and <i>Nâ€</i> arylation Reaction under Ligandâ€Free Condition. ChemistrySelect, 2017, 2, 7150-7159.	1.5	16
170	Surface functionalization of SBA-15 for immobilization of lipase and its application in synthesis of alkyl levulinates: Optimization and kinetics. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101038.	3.1	16
171	Rate intensive and selective etherification of vanillin with benzyl chloride under solid–liquid phase transfer catalysis by aqueous omega phase. Journal of Molecular Catalysis A, 2006, 244, 271-277.	4.8	15
172	Alkylation of Xylenes with Isopropyl Alcohol over Acidic Clay Supported Catalysts: Efficacy of 20% w/w Cs _{2.5} H _{0.5} PW ₁₂ O ₄₀ /K-10 Clay. Industrial & Engineering Chemistry Research, 2009, 48, 9383-9393.	3.7	15
173	Novelty of Claisen–Schmidt condensation of biomass-derived furfural with acetophenone over solid super base catalyst. RSC Advances, 2014, 4, 63772-63778.	3.6	15
174	Cascade engineered synthesis of ethyl benzyl acetoacetate and methyl isobutyl ketone (MIBK) on novel multifunctional catalyst. Journal of Molecular Catalysis A, 2015, 409, 171-182.	4.8	15
175	Process intensification using immobilized enzymes for the development of white biotechnology. Catalysis Science and Technology, 2021, 11, 1994-2020.	4.1	15
176	Green alkylation of anisole with cyclohexene over 20% cesium modified heteropoly acid on K-10 acidic montmorillonite clay. Applied Clay Science, 2011, 53, 254-262.	5.2	14
177	Selective liquid phase oxidation of secondary alcohols into ketones by tert-butyl hydroperoxide on nano-fibrous Ag-OMS-2 catalyst. Journal of Molecular Catalysis A, 2013, 380, 70-77.	4.8	14
178	Solventless green synthesis of 4-O-aryloxy carbonates from aryl/alkyl-oxy propanediols and dimethyl carbonate over nano-crystalline alkali promoted alkaline earth metal oxides. Catalysis Science and Technology, 2013, 3, 2668.	4.1	14
179	Microwave Assisted Enzymatic Kinetic Resolution of $(\hat{A}\pm)$ -1-Phenyl-2-propyn-1-ol in Nonaqueous Media. BioMed Research International, 2014, 2014, 1-9.	1.9	14
180	Kinetics and mechanism of regioselective monoacetylation of 3-aryloxy-1,2-propandiols using immobilized Candida antarctica lipase. Journal of Industrial and Engineering Chemistry, 2015, 31, 335-342.	5.8	14

#	Article	IF	CITATIONS
181	Microwave assisted solvent-free synthesis of n -butyl propionate by immobilized lipase as catalyst. Biocatalysis and Agricultural Biotechnology, 2018, 14, 264-269.	3.1	14
182	Selectivity Engineering in One Pot Synthesis of Raspberry Ketone: Crossed Aldol Condensation of ⟨i⟩p⟨ i⟩â€Hydroxybenzaldehyde and Acetone and Hydrogenation over Novel Ni/Znâ€La Mixed Oxide. ChemistrySelect, 2019, 4, 2140-2152.	1.5	14
183	Zinc-electrocatalyzed hydrogenation of furfural in near-neutral electrolytes. Sustainable Energy and Fuels, 2021, 5, 2972-2984.	4.9	14
184	Clean esterification of mandelic acid over Cs2.5H0.5PW12O40 supported on acid treated clay. Clean Technologies and Environmental Policy, 2005, 7, 245-251.	4.1	13
185	Selective Claisen rearrangement of allyl-2,4-di-tert-butylphenyl ether to 6-allyl-2,4-di-tert-butylphenol catalysed by heteropolyacid supported on hexagonal mesoporous silica. Journal of Molecular Catalysis A, 2006, 243, 31-39.	4.8	13
186	Ionic Liquid as Catalyst for Solidâ^Liquid Phase Transfer Catalyzed Synthesis ofp-Nitrodiphenyl Ether. Industrial & Description of the Property Research, 2008, 47, 9081-9089.	3.7	13
187	Loss Prevention and Waste Minimization with Cascade-Engineered Green Synthesis of Bisphenol-A from Cumene Hydroperoxide and Phenol using Heteropoly Acid-Supported Clay Catalysts. Organic Process Research and Development, 2009, 13, 501-509.	2.7	13
188	Atom Economical Green Synthesis of Chloromethyl-1,3-dioxolanes from Epichlorohydrin Using Supported Heteropolyacids. Industrial & Engineering Chemistry Research, 2013, 52, 6129-6137.	3.7	13
189	Novelties of combustion synthesized and functionalized solid superacid catalysts in selective isomerization of styrene oxide to 2-phenyl acetaldehyde. Catalysis Today, 2013, 207, 145-152.	4.4	13
190	Synthesis of long alkyl chain ethers through etherification of ethylene glycol with 1-octene using heteropolyacid supported on K-10 clay. Applied Catalysis A: General, 2014, 477, 18-25.	4.3	13
191	Green Synthesis of Vanillyl Mandelic Acid (Sodium Salt) from Guaiacol and Sodium Glyoxylate over Novel Silica Encapsulated Magnesium Hydroxide. ACS Sustainable Chemistry and Engineering, 2016, 4, 1974-1984.	6.7	13
192	Novel Silica-Encapsulated Cu–Al Hydrotalcite Catalyst: Oxidative Decarboxylation of Vanillyl Mandelic Acid to Vanillin in Water at Atmospheric Pressure. Industrial & Decarboxylation of Vanillyl Research, 2017, 56, 12899-12908.	3.7	13
193	Cascade engineered synthesis of 2-ethyl-1-hexanol from n-butanal and 2-methyl-1-pentanol from n-propanal using combustion synthesized Cu/Mg/Al mixed metal oxide trifunctional catalyst. Catalysis Today, 2017, 291, 223-233.	4.4	13
194	Green Synthesis of Veratraldehyde Using Potassium Promoted Lanthanum–Magnesium Mixed Oxide Catalyst. Organic Process Research and Development, 2017, 21, 1012-1020.	2.7	13
195	Grapheneâ€Oxideâ€Supported SO ₃ Hâ€Functionalized Imidazoliumâ€Based Ionic Liquid: Efficient and Recyclable Heterogeneous Catalyst for Alcoholysis and Aminolysis Reactions. ChemistrySelect, 2018, 3, 4547-4556.	1.5	13
196	Clean synthesis of benzylidenemalononitrile by Knoevenagel condensation of benzaldehyde and malononitrile: effect of combustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts. Journal of Chemical Sciences, 2019, 131, 1.	1.5	13
197	Process intensification and waste minimization using liquid-liquid-liquid tri-phase transfer catalysis for the synthesis of 2-((benzyloxy)methyl)furan. Molecular Catalysis, 2019, 466, 112-121.	2.0	13
198	Chemoenzymatic Epoxidation of Limonene Using a Novel Surface-Functionalized Silica Catalyst Derived from Agricultural Waste. ACS Omega, 2020, 5, 22940-22950.	3.5	13

#	Article	IF	CITATIONS
199	Synthesis and Application of Novel NiMoK/TS-1 for Selective Conversion of Fatty Acid Methyl Esters/Triglycerides to Olefins. ACS Omega, 2020, 5, 5061-5071.	3.5	13
200	Selective Oxidation of Methyl Diphenyl Methyl Mercapto Acetate to Methyl Diphenyl Methyl Sulfinyl Acetate Using a Novel Catalyst UDCaT-3 ^{â€} . Organic Process Research and Development, 2010, 14, 537-543.	2.7	12
201	Selective hydrogenation of 3,4â€dimethoxybenzophenone in liquid phase over Pd/C catalyst in a slurry reactor. Canadian Journal of Chemical Engineering, 2014, 92, 2157-2165.	1.7	12
202	Template Assisted Synthesis of Nanocrystalline Sulfated Titania: Active and Robust Catalyst for Regioselective Ring Opening of Epoxide with Aniline and Kinetic Modeling. Industrial & Engineering Chemistry Research, 2016, 55, 10829-10838.	3.7	12
203	Novelty of iron-exchanged heteropolyacid encapsulated inside ZIF-8 as an active and superior catalyst in the esterification of furfuryl alcohol and acetic acid. Reaction Chemistry and Engineering, 2019, 4, 1790-1802.	3.7	12
204	Sustainable and selective hydrogen production by steam reforming of bio-based ethylene glycol: Design and development of Ni–Cu/mixed metal oxides using M (CeO2, La2O3, ZrO2)–MgO mixed oxides. International Journal of Hydrogen Energy, 2021, 46, 4808-4826.	7.1	12
205	Biodegradation of organophosphorus insecticide chlorpyrifos into a major fuel additive 2,4-bis(1,1) Tj ETQq1 1 Chemical Society, 2021, 98, 100120.	0.784314 ı 2.8	gBT /Overlo
206	Bimetallic Cu–Ni Nanometal Supported over Mesocellular Silica Foam As a Novel Catalyst for One-Pot Synthesis of Benzimidazole in DMF As a Bifunctional Reagent. Industrial & Description of Septime 2022, 61, 6909-6924.	3.7	12
207	Dodecatungstophosphoric Acid Supported on Acidic Clay Catalyst for Disproportionation of Ethylbenzene in the Presence of C8 Aromatics. Industrial & Engineering Chemistry Research, 2012, 51, 1209-1217.	3.7	11
208	Selectivity Engineered Friedel–Crafts Acylation of Guaiacol with Vinyl Acetate to Acetovanillone over Cesium-Modified Heteropolyacid Supported on K-10 Clay. Industrial & Diagram (Septimeering Chemistry Research, 2013, 52, 10627-10636.	3.7	11
209	Selective Green Synthesis of 1,5-Benzodiazepine over Modified Heteropolyacid as Nanocatalyst: Kinetics and Mechanism. Industrial & Engineering Chemistry Research, 2013, 52, 17812-17820.	3.7	11
210	Selective mono-isopropylation of 1,3-propanediol with isopropyl alcohol using heteropoly acid supported on K-10 clay catalyst. Catalysis Today, 2014, 237, 54-61.	4.4	11
211	Enantioselective resolution of (R,S)-α-methyl-4-pyridinemethanol using immobilized biocatalyst: Optimization and kinetic modeling. Biochemical Engineering Journal, 2017, 122, 152-158.	3.6	11
212	Activity and selectivity of different base catalysts in synthesis of guaifenesin from guaiacol and glycidol of biomass origin. Catalysis Today, 2017, 291, 213-222.	4.4	11
213	Selectivity Engineering in Synthesis of Thymol Using Sulfated ZrO2–TiO2. Industrial & Engineering Chemistry Research, 2017, 56, 8437-8447.	3.7	11
214	Green synthesis of α-methylcinnamaldehyde via Claisen-Schmidt condensation of benzaldehyde with propanal over Mg–Zr mixed oxide supported on HMS. Molecular Catalysis, 2018, 459, 119-128.	2.0	11
215	Controlled manipulation of selectivity between O- versus C-alkylation in methylation of phenol using ZrO2-WO3- SiO2 catalysts. Applied Catalysis A: General, 2018, 562, 67-78.	4.3	11
216	Regioselective ring opening reaction of epichlorohydrin with acetic acid to 3-chloro-2-hydroxypropyl acetate over cesium modified heteropolyacid on clay support. Applied Catalysis A: General, 2013, 468, 112-119.	4.3	10

#	Article	IF	CITATIONS
217	Novel Bifunctional Palladium-Dodecatungstophosphoric Acid Supported on Titania Nanotubes: One-Pot Synthesis of n-Pentyl Tetrahydrofurfuryl Ether from Furfuryl Alcohol and n-Pentanol. Industrial & Engineering Chemistry Research, 2017, 56, 12909-12919.	3.7	10
218	Preparation of amino-functionalized silica supports for immobilization of epoxide hydrolase and cutinase: characterization and applications. Journal of Porous Materials, 2020, 27, 1559-1567.	2.6	10
219	The Impending Renaissance in Discovery & Development of Natural Products. Current Topics in Medicinal Chemistry, 2016, 17, 251-267.	2.1	10
220	Atom efficient Friedel–Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Applied Catalysis A: General, 2012, 433-434, 265-274.	4.3	9
221	Lipaseâ€Catalyzed Kinetic Resolution of (±)â€1â€(2â€Furyl) Ethanol in Nonaqueous Media. Chirality, 2014, 26, 286-292.	2.6	9
222	Synthesis, characterization and application of iron-aluminate nodules in advanced Fenton's oxidation process. Journal of Environmental Chemical Engineering, 2015, 3, 2010-2021.	6.7	9
223	Insight into regioselective hydrogenation of methyl phenyl glyoxalate to methyl mandelate over Pt/l±-MnO 2 nanorods. Molecular Catalysis, 2017, 433, 250-264.	2.0	9
224	Selective carbonylation of o-phenylene diamine using carbon dioxide as feedstock for synthesis of 1, 3-dihydro-benzimidazol-2-one over La-Zr mixed oxide. Journal of Cleaner Production, 2017, 166, 285-298.	9.3	9
225	Biobased process intensification in selective synthesis of γ-butyrolactone from succinic acid via synergistic palladium–copper bimetallic catalyst supported on alumina xerogel. Clean Technologies and Environmental Policy, 2018, 20, 683-693.	4.1	9
226	Tuneable transesterification of glycerol with dimethyl carbonate for synthesis of glycerol carbonate and glycidol on MnO2 nanorods and efficacy of different polymorphs. Molecular Catalysis, 2021, 515, 111934.	2.0	9
227	Atom economical Michael addition of indole with methyl vinyl ketone over novel solid acid catalyst sulfated zirconia on silica tubes. Microporous and Mesoporous Materials, 2014, 195, 180-190.	4.4	8
228	Process intensification in methane generation during anaerobic digestion of Napier grass using supercritical carbon dioxide combined with acid hydrolysis preâ€treatment. Canadian Journal of Chemical Engineering, 2014, 92, 2176-2184.	1.7	8
229	Oneâ€pot synthesis of (<i>R</i>)â€1â€(pyridinâ€4â€yl)ethyl acetate using tandem catalyst prepared by coâ€immobilization of palladium and lipase on mesoporous foam: Optimization and kinetic modeling. Chirality, 2017, 29, 811-823.	2.6	8
230	Chemoselective Acetylation of 2-Aminophenol Using Immobilized Lipase: Process Optimization, Mechanism, and Kinetics. ACS Omega, 2018, 3, 18528-18534.	3.5	8
231	A Green Process for Synthesis of Geraniol Esters by Immobilized Lipase from Candida Antarctica B Fraction in Non-Aqueous Reaction Media: Optimization and Kinetic Modeling. International Journal of Chemical Reactor Engineering, 2018, 16, .	1.1	8
232	Superior activity and selectivity of multifunctional catalyst Pd-DTP@ZIF-8 in one pot synthesis of 3-phenyl propyl benzoate. Inorganica Chimica Acta, 2019, 490, 282-293.	2.4	8
233	Multi-functional Fe-Al0.66DTP/MCF catalyst in cascade engineered synthesis of the drug butamben: Novelty of catalyst, reaction kinetics and mechanism. Molecular Catalysis, 2020, 483, 110711.	2.0	8
234	Highly selective production of styrene by non-oxidative dehydrogenation of ethylbenzene over molybdenum-zirconium mixed oxide catalyst in fixed bed reactor: Activity, stability and kinetics. Catalysis Communications, 2021, 154, 106307.	3.3	8

#	Article	IF	Citations
235	Exploring the untapped potential of solar pretreatment for deconstruction of recalcitrant Kraft lignin in fungal biotransformation. Clean Technologies and Environmental Policy, 2019, 21, 579-590.	4.1	7
236	Extraction of epoxide hydrolase from Glycine max using microwave-assisted three phase partitioning with dimethyl carbonate as green solvent. Food and Bioproducts Processing, 2020, 124, 159-167.	3.6	7
237	Zn- and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method. ACS Omega, 2020, 5, 2088-2096.	3.5	7
238	Esterification of propanoic acid with 1,2-propanediol: catalysis by cesium exchanged heteropoly acid on K-10 clay and kinetic modelling. Reaction Chemistry and Engineering, 2021, 6, 313-320.	3.7	7
239	Friedel-crafts acylation of furan using chromium-exchanged dodecatungstophosphoric acid: effect of support, mechanism and kinetic modelling. Clean Technologies and Environmental Policy, 2021, 23, 2429-2441.	4.1	7
240	Organic-inorganic epoxide hydrolase hybrid nanoflowers with enhanced catalytic activity: Hydrolysis of styrene oxide to 1-phenyl-1,2-ethanediol. Journal of Biotechnology, 2021, 341, 113-120.	3.8	7
241	Direct synthesis of dimethyl ether from CO ₂ hydrogenation over a highly active, selective and stable catalyst containing Cuâ€"ZnOâ€"Al ₂ O ₃ /Alâ€"Zr(1 : 1)-SBA-15. Reachemistry and Engineering, 2022, 7, 1391-1408.	c tiø n	7
242	Selectivity Engineering in Synthesis of 4-Benzyloxy Propiophenone Using Liquid–Liquid–Liquid Phase-Transfer Catalysis. Industrial & Engineering Chemistry Research, 2012, 51, 3256-3264.	3.7	6
243	Population balance modeling and simulation of liquid–liquid–liquid phase transfer catalyzed synthesis of mandelic acid from benzaldehyde. AICHE Journal, 2012, 58, 3799-3809.	3.6	6
244	Selective acetalization of ethylene glycol with methyl 2-napthyl ketone over solid acids: Efficacy of acidic clay supported Cs2.5H0.5PW12O40. Catalysis Today, 2014, 237, 125-135.	4.4	6
245	Kinetic resolution of (R,S) phenyl glycidyl ether by red mung beans (Vigna angularis) epoxide hydrolases. Biocatalysis and Agricultural Biotechnology, 2017, 12, 260-265.	3.1	6
246	Green synthesis of methyl salicylate using novel sulfated iron oxide–zirconia catalyst. Clean Technologies and Environmental Policy, 2019, 21, 533-545.	4.1	6
247	Valorization of Bio-Oils to Fuels and Chemicals. ACS Symposium Series, 2021, , 29-67.	0.5	6
248	Solvent-Free Benzylation of Glycerol by Benzyl Alcohol Using Heteropoly Acid Impregnated on K-10 Clay as Catalyst. Catalysts, 2021, 11, 34.	3.5	6
249	<scp>Synthesis</scp> of environmentâ€friendly, sustainable, and nontoxic bioâ€lubricants: A critical review of advances and a path forward. Biofuels, Bioproducts and Biorefining, 2022, 16, 1172-1195.	3.7	6
250	Ecofriendly Claisen Rearrangement of Allyl-4-tert-butylphenyl Ether Using Heteropolyacid Supported on Hexagonal Mesoporous Silica. Organic Process Research and Development, 2005, 9, 547-554.	2.7	5
251	Selectivity engineering in hydroxyalkoxylation of phenol by ethylene carbonate using calcined hydrotalcite. Clean Technologies and Environmental Policy, 2017, 19, 1413-1422.	4.1	5
252	Novel alkali-promoted hydrotalcite for selective synthesis of 2-methoxy phenyl benzoate from guaiacol and benzoic anhydride. Clean Technologies and Environmental Policy, 2017, 19, 1169-1180.	4.1	5

#	Article	IF	CITATIONS
253	Green strategy for the synthesis of mesoporous, free-standing MAl2O4 (MÂ=ÂFe, Co, Ni, Cu) spinel films by sol–gel method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115244.	3.5	5
254	Microwave Assisted Enzyme Catalysis: Practice and Perspective. RSC Green Chemistry, 2015, , 52-103.	0.1	5
255	Superior efficacy of biocomposite membranes of chitosan with montmorillonite and kaolin vs pure chitosan for removal of Cu(II) from wastewater. Journal of Chemical Sciences, 2022, 134, 1.	1.5	5
256	Selectivity engineering in isopropylation of mesitylene with isopropyl alcohol over cesium substituted heteropolyacid supported on K-10 clay. Clean Technologies and Environmental Policy, 2009, 11, 447-457.	4.1	4
257	Novelties of low energy microwave-irradiated tri-liquid phase transfer catalysis (MILLL-PTC): halo-exchange of benzyl chloride with sodium bromide. Clean Technologies and Environmental Policy, 2012, 14, 709-718.	4.1	4
258	Advances in Catalysis for Sustainable Development Special Issue. ACS Sustainable Chemistry and Engineering, 2017, 5, 3597-3597.	6.7	4
259	Fermentative production, purification of inulinase from Aspergillus terreus MTCC 6324 and its application for hydrolysis of sucrose. Biocatalysis and Agricultural Biotechnology, 2018, 14, 293-299.	3.1	4
260	Development of novel support for penicillin acylase and its application in 6-aminopenicillanic acid production. Molecular Catalysis, 2019, 476, 110484.	2.0	4
261	Selectivity engineering in catalysis by ruthenium nanoparticles supported on heteropolyacid-encapsulated MOF-5: one-pot synthesis of allyl 4-cyclohexanebutyrate and kinetic modeling. Emergent Materials, 2020, 3, 965-988.	5.7	4
262	Development of Green and Clean Processes for Perfumes and Flavors Using Heterogeneous Chemical Catalysis. Current Catalysis, 2020, 9, 32-58.	0.5	4
263	Design of a novel dual function membrane microreactor for liquid–liquid–liquid phase transfer catalysed reaction: selective synthesis of 1-naphthyl glycidyl ether. Reaction Chemistry and Engineering, 2021, 6, 858-867.	3.7	4
264	Molybdenum oxide modified montmorillonite K10 clay as novel solid acid for flow synthesis of ionone isomers. Molecular Catalysis, 2021, 501, 111362.	2.0	4
265	Synthesis of salicylaldehyde through oxidation of o-cresol: Evaluation of activity and selectivity of different metals supported on OMS-2 nanorods and kinetics. Molecular Catalysis, 2020, 491, 110991.	2.0	4
266	Kinetic Modeling and Optimization of Immobilized Candida antarctica Lipase B Catalysed Synthesis of Butyl-4-Methyl-3-Oxopentanoate using Response Surface Methodology. International Journal of Chemical Reactor Engineering, 2012, 10, .	1.1	3
267	Selective synthesis of 1 -(1 -naphthyloxy)- 2 , 3 -epoxypropane from 1 -naphthol and epichlorohydrin under solidâ \in "liquid phase transfer catalysis: a waste minimization strategy. Clean Technologies and Environmental Policy, 2017, 19, 1223-1230.	4.1	3
268	Green synthetic route for perfumery compound (2-methoxyethyl) benzene using Li/MgO catalyst. Journal of Chemical Sciences, 2017, 129, 1771-1779.	1.5	3
269	Kinetic Modelling of Enzyme Catalyzed Biotransformation Involving Activations and Inhibitions. , 2017,		3
270	Experimental and Modeling Assessment of Sulfate and Arsenic Removal from Mining Wastewater by Nanofiltration. International Journal of Chemical Reactor Engineering, 2018, 16 , .	1.1	3

#	Article	IF	CITATIONS
271	Design and Development of Novel Continuous Flow Stirred Multiphase Reactor: Liquid–Liquid–Liquid Phase Transfer Catalysed Synthesis of Guaiacol Glycidyl Ether. Processes, 2020, 8, 1271.	2.8	3
272	Selectivity Engineering in One-Pot Selective Synthesis of Drug Nabumetone over Novel Ni-Promoted La-Mg Oxide/Mesoporous Cellular Foam as Catalyst and Kinetic Modeling. Industrial & Diplication Chemistry Research, 2020, 59, 2781-2795.	3.7	3
273	CuO-ZnO-MgO as sustainable and selective catalyst towards synthesis of cyclohexanone by dehydrogenation of cyclohexanol over monovalent copper. Molecular Catalysis, 2021, 506, 111534.	2.0	3
274	GREEN SYNTHESIS OF 2,3-OXYBUTYL MALONONITRILE VIAMICHAEL REACTION OF METHYL VINYL KETONE WITH MALONONITRILE OVER TITANIA AND ZINC LOADED HYDROTALCITE CATALYSTS. Catalysis in Green Chemistry and Engineering, 2019, 2, 43-54.	0.2	3
275	Synthesis of novel titania membrane support via combustion synthesis route and its application in decolorization of aqueous effluent using microfiltration. Clean Technologies and Environmental Policy, 2016, 18, 139-149.	4.1	2
276	Insight into solid-liquid phase transfer catalyzed synthesis of Mecoprop ester using \$\$hbox {K}_{2}hbox {CO}_{3}\$\$ K 2 CO 3 as base and development of new kinetic model involving liquid product and two solid co-products. Journal of Chemical Sciences, 2017, 129, 1677-1685.	1.5	2
277	K–La–MgO as heterogeneous catalyst for synthesis of 3-(2-hydroxyethyl)-1,3-oxazolidin-2-one from diethanol amine and carbon dioxide. Clean Technologies and Environmental Policy, 2018, 20, 1875-1888.	4.1	2
278	Environmentally benign synthesis of mesoporous cobaltaluminate nodules as catalyst and its effect on the selective oxidation of benzhydrol to benzophenone. Journal of Environmental Chemical Engineering, 2019, 7, 102834.	6.7	2
279	Kinetic study for ionic liquid catalyzed green O-methylation of cresols using dimethyl carbonate. Chemical Engineering Research and Design, 2021, 168, 202-213.	5.6	2
280	Catalytic Self-condensation of 5-Hydroxymethylfurfural over Modified Heteropolyacid. Current Catalysis, $2017, 6, .$	0.5	2
281	Solvent-free oxidative esterification of furfural to 2-methyl furoate using novel copper-exchanged tungstophosphoric acid supported on montmorillonite K-10 catalyst. Molecular Catalysis, 2022, 524, 112256.	2.0	2
282	Hydrothermal processing of waste pine wood into industrially useful products. Journal of the Indian Chemical Society, 2022, 99, 100647.	2.8	2
283	Catalysis Today Special Issue: Catalysis for Sustainable Development, Peace and Prosperity. Catalysis Today, 2018, 309, 1.	4.4	1
284	A Green Process for Selective Hydrolysis of Cinnamaldehyde in Water to Natural Benzaldehyde by Using Ti and Zn Modified Hydrotalcites as Catalysts. Current Green Chemistry, 2019, 6, 242-254.	1.1	1
285	Enhancing Activity by Supercritical CO2 Mediated Immobilization of Lipase on Mesocellular Foam in Preparation of Hexyl Laurate. Applied Biochemistry and Biotechnology, 2020, 190, 686-702.	2.9	1
286	Continuous Synthesis and Separation of <i>p</i> -Bromobenzyl Bromide Using Atom-Efficient Bromination of <i>p</i> -Bromotoluene without Any Organic Effluent: Potential for Green Industrial Practice. Organic Process Research and Development, 2021, 25, 2071-2080.	2.7	1
287	Catalysis for sustainable development. Clean Technologies and Environmental Policy, 2018, 20, 681-682.	4.1	0
288	BEGINNING OF A NEW ERA: INAUGURAL ISSUE OF CATALYSIS IN GREEN CHEMISTRY AND ENGINEERING. Catalysis in Green Chemistry and Engineering, 2018, 1, ν .	0.2	0

#	Article	IF	CITATIONS
289	A novel single-step hydrogenation of 2-imidazolecarboxaldehyde to 2-methylimidazole over Pd-impregnated Al–Ti mixed oxide and kinetics. Reaction Chemistry and Engineering, 2020, 5, 1461-1473.	3.7	0
290	Synthesis of Unsaturated Drying Oils from Saturated Fatty Oils Derived from Renewable Feedstocks. Industrial & Derived Renewable Feedstocks.	3.7	0
291	NOVELTIES OF Mg-Al CALCINED HYDROTALCITE CATALYZED ONE-POT SYNTHESIS OF 2-PHENYL-1,3-DINITROPROPANE: REACTION MECHANISM AND KINETICS. Catalysis in Green Chemistry and Engineering, 2018, 1, 277-291.	0.2	0
292	KINETICS OF SOLVENTLESS HYDROARYLATION OF STYRENE WITH ANISOLE USING NOVEL HETEROGENEOUS Cs-DTPA CATALYST SUPPORTED ON MESOCELLULAR FOAM (MCF) SILICA. Catalysis in Green Chemistry and Engineering, 2018, 1, 223-234.	0.2	0
293	NOVELTIES OF SELECTIVITY IN TRILIQUID PHASE-TRANSFER-CATALYZED DIBENZYLATION OF RESORCINOL. Catalysis in Green Chemistry and Engineering, 2018, 1, 325-344.	0.2	O
294	IN SITU DRIFTS STUDIES OF THE NOVEL SUPERACIDIC SULFATED ZIRCONIA CATALYST: AN INVESTIGATION OF ACIDITY, CATALYTIC ACTIVITY, DEACTIVATION PHENOMENON AND REGENERATION OF ACTIVE SITES. Catalysis in Green Chemistry and Engineering, 2018, 1, 263-275.	0.2	0
295	SYNTHESIS OF 3-METHOXYCATECHOL FROM PYROGALLOL AND DIMETHYL CARBONATE IN LIQUID PHASE SLURRY REACTOR. Catalysis in Green Chemistry and Engineering, 2018, 1, 91-103.	0.2	0
296	COMPUTATIONAL MODELING STUDY OF ACYLATION OF PHENOL OVER ZEOLITES TO HYDROXYACETOPHENONES. Catalysis in Green Chemistry and Engineering, 2019, 2, 75-90.	0.2	0
297	TiO2 CATALYZED PHOTOCATALYTIC MINERALIZATION OF AMOXICILLIN FROM AQUEOUS SOLUTION: POTENTIAL APPLICATION OF HOMBIKAT N10. Catalysis in Green Chemistry and Engineering, 2020, 3, 153-162.	0.2	0
298	MECHANISM AND KINETICS OF LIQUID-LIQUID PHASE TRANSFER CATALYZED ETHERIFICATION OF EUGENOL WITH ALLYL BROMIDE. Catalysis in Green Chemistry and Engineering, 2020, 3, 79-90.	0.2	0
299	O-METHYLATION OF HYDROXYACETOPHENONE USING DIMETHYL CARBONATE WITH IONIC LIQUID AS A CATALYST. Catalysis in Green Chemistry and Engineering, 2020, 3, 163-177.	0.2	0
300	V2O5/HMS AS NOVEL CATALYST FOR PRODUCTION OF 1,1'-BI-2-NAPHTHOL BY OXIDATIVE C-C COUPLING OF 2-NAPHTHOL: ACTIVITY, SELECTIVITY AND KINETICS. Catalysis in Green Chemistry and Engineering, 2020, 3, 13-31.	0.2	0
301	CLAISEN REARRANGEMENT OF ALLYL-2,6-DIMETHYLPHENYL ETHER OVER A SOLID SUPERACID UDCaT-5 CATALYST. Catalysis in Green Chemistry and Engineering, 2020, 3, 1-12.	0.2	0
302	Pseudoionone synthesis from citral and acetone in fixed bed catalytic reactor with lanthanum modified calcium oxide. New Journal of Chemistry, 0 , , .	2.8	0
303	Zinc-Catalyzed Electrocatalytic Hydrogenation of Furfural at Neutral pH. ECS Meeting Abstracts, 2020, MA2020-02, 3274-3274.	0.0	0
304	A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing., 2021, 8,.		0