Karen Goodell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6512609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Resources and Risks in Regulating Wild Bee Populations. Annual Review of Entomology, 2011, 56, 293-312.	11.8	460
2	Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences, 2015, 3, 1400066.	2.1	195
3	Shading by invasive shrub reduces seed production and pollinator services in a native herb. Biological Invasions, 2010, 12, 2751-2763.	2.4	117
4	Rankâ€based characterization of pollen assemblages collected by honey bees using a multiâ€locus metabarcoding approach. Applications in Plant Sciences, 2015, 3, 1500043.	2.1	100
5	Population size and relatedness affect fitness of a self-incompatible invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 549-552.	7.1	96
6	Food availability affects Osmia pumila (Hymenoptera: Megachilidae) foraging, reproduction, and brood parasitism. Oecologia, 2003, 134, 518-527.	2.0	94
7	Diversity and Distribution of Floral Resources Influence the Restoration of Plant–Pollinator Networks on a Reclaimed Strip Mine. Restoration Ecology, 2013, 21, 713-721.	2.9	54
8	Plant–pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Plant Ecology, 2011, 212, 1025-1035.	1.6	49
9	Pollen Limitation and Local Habitatâ€Dependent Pollinator Interactions in the Invasive Shrub <i>Lonicera maackii</i> . International Journal of Plant Sciences, 2010, 171, 63-72.	1.3	34
10	Invasion of a dominant floral resource: effects on the floral community and pollination of native plants. Ecology, 2017, 98, 57-69.	3.2	29
11	Habitat Preference and Phenology of Nest Seeking and Foraging Spring Bumble Bee Queens in Northeastern North America (Hymenoptera: Apidae: Bombus). American Midland Naturalist, 2019, 182, 131.	0.4	25
12	Documenting bee decline or squandering scarce resources. Conservation Biology, 2015, 29, 280-282.	4.7	24
13	Synergism between local†and landscapeâ€level pesticides reduces wild bee floral visitation in pollinatorâ€dependent crops. Journal of Applied Ecology, 2021, 58, 1187-1198.	4.0	20
14	Demographic consequences of greater clonal than sexualÂreproduction in <i>Dicentra canadensis</i> . Ecology and Evolution, 2016, 6, 3871-3883.	1.9	14
15	Bumble bee species distributions and habitat associations in the Midwestern USA, a region of declining diversity. Biodiversity and Conservation, 2021, 30, 865-887.	2.6	12
16	Preference of Peponapis pruinosa (Hymenoptera: Apoidea) for Tilled Soils Regardless of Soil Management System. Environmental Entomology, 2019, 48, 961-967.	1.4	9
17	Bumble bee colony growth and reproduction on reclaimed surface coal mines. Restoration Ecology, 2018, 26, 183-194.	2.9	8

18 10. Invasive Exotic Plant-Bee Interactions. , 0, , 166-184.

Karen Goodell

#	Article	IF	CITATIONS
19	Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant. Journal of Pollination Ecology, 0, 13, 174-183.	0.5	7
20	Mulch Effects on Floral Resources and Fruit Production of Squash, and on Pollination and Nesting by Squash Bees. HortTechnology, 2014, 24, 535-545.	0.9	5
21	Rapid recovery of plant–pollinator interactions on a chronosequence of grassland-reclaimed mines. Journal of Insect Conservation, 2020, 24, 977-991.	1.4	2
22	Tenâ€year trends reveal declining quality of seeded pollinator habitat on reclaimed mines regardless of seed mix diversity. Ecological Applications, 2022, 32, e02467.	3.8	1
23	Utility of carbon and nitrogen stable isotopes for inferring wild bee (Hymenoptera: Apoidea) use of adjacent foraging habitats. PLoS ONE, 2022, 17, e0271095.	2.5	1