Victoria O Shipunova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651233/publications.pdf

Version: 2024-02-01

45 papers 1,066 citations

471509 17 h-index 31 g-index

50 all docs 50 docs citations

50 times ranked

994 citing authors

#	Article	IF	CITATIONS
1	Biocomputing based on particle disassembly. Nature Nanotechnology, 2014, 9, 716-722.	31.5	132
2	Nanoparticle-based drug delivery <i>via</i> RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale, 2019, 11, 1636-1646.	5. 6	126
3	Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nature Biomedical Engineering, 2020, 4, 717-731.	22.5	103
4	Plants with genetically encoded autoluminescence. Nature Biotechnology, 2020, 38, 944-946.	17.5	89
5	MPQ-cytometry: a magnetism-based method for quantification of nanoparticle–cell interactions. Nanoscale, 2016, 8, 12764-12772.	5.6	48
6	Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Materials Science and Engineering C, 2021, 120, 111717.	7.3	44
7	Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS Nano, 2020, 14, 12781-12795.	14.6	43
8	Versatile Platform for Nanoparticle Surface Bioengineering Based on SiO ₂ -Binding Peptide and Proteinaceous Barnase*Barstar Interface. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17437-17447.	8.0	40
9	Dual Targeting of Cancer Cells with DARPin-Based Toxins for Overcoming Tumor Escape. Cancers, 2020, 12, 3014.	3.7	34
10	Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics, 2022, 14, 1013.	4.5	27
11	Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. Light: Science and Applications, 2022, 11, 38.	16.6	26
12	Self-assembling nanoparticles biofunctionalized with magnetite-binding protein for the targeted delivery to HER2/neu overexpressing cancer cells. Journal of Magnetism and Magnetic Materials, 2019, 469, 450-455.	2.3	25
13	PLGA Nanoparticles Decorated with Anti-HER2 Affibody for Targeted Delivery and Photoinduced Cell Death. Molecules, 2021, 26, 3955.	3.8	25
14	Comparative Evaluation of Engineered Polypeptide Scaffolds in HER2-Targeting Magnetic Nanocarrier Delivery. ACS Omega, 2021, 6, 16000-16008.	3 . 5	23
15	Development of Immunoassays Using Interferometric Real-Time Registration of Their Kinetics. Acta Naturae, 2014, 6, 85-95.	1.7	22
16	A Highly Specific Substrate for NanoLUC Luciferase Furimazine Is Toxic in vitro and in vivo. Russian Journal of Bioorganic Chemistry, 2018, 44, 225-228.	1.0	20
17	Phaseâ€Responsive Fourier Nanotransducers for Probing 2D Materials and Functional Interfaces. Advanced Functional Materials, 2019, 29, 1902692.	14.9	18
18	Targeting Cancer Cell Tight Junctions Enhances PLGA-Based Photothermal Sensitizers' Performance In Vitro and In Vivo. Pharmaceutics, 2022, 14, 43.	4. 5	18

#	Article	IF	Citations
19	Synthesis of Magnetic Nanoparticles Stabilized by Magnetite-Binding Protein for Targeted Delivery to Cancer Cells. Doklady Biochemistry and Biophysics, 2018, 481, 198-200.	0.9	17
20	Antigenâ€Specific Stimulation and Expansion of CARâ€T Cells Using Membrane Vesicles as Target Cell Surrogates. Small, 2021, 17, e2102643.	10.0	17
21	DARPin_9-29-Targeted Gold Nanorods Selectively Suppress HER2-Positive Tumor Growth in Mice. Cancers, 2021, 13, 5235.	3.7	17
22	Artificial Scaffold PolypeptidesAs an Efficient Tool for the Targeted Delivery of Nanostructures In Vitro and In Vivo., 2022, 14, 54-72.		17
23	Delivery of Barnase to Cells in Liposomes Functionalized by Her2-Specific DARPin Module. Russian Journal of Bioorganic Chemistry, 2020, 46, 1156-1161.	1.0	16
24	A comprehensive study of interactions between lectins and glycoproteins for the development of effective theranostic nanoagents. Doklady Biochemistry and Biophysics, 2015, 464, 315-318.	0.9	14
25	"Green―Synthesis of Cytotoxic Silver Nanoparticles Based on Secondary Metabolites of Lavandula Angustifolia Mill Acta Naturae, 2019, 11, 47-53.	1.7	14
26	Direct photoacoustic measurement of silicon nanoparticle degradation promoted by a polymer coating. Chemical Engineering Journal, 2022, 430, 132860.	12.7	14
27	Chemotherapeutic Agents Sensitize Resistant Cancer Cells to the DR5-Specific Variant DR5-B More Efficiently Than to TRAIL by Modulating the Surface Expression of Death and Decoy Receptors. Cancers, 2020, 12, 1129.	3.7	9
28	Synthesis and Characterization of Hybrid Core-Shell Fe3O4/SiO2 Nanoparticles for Biomedical Applications. Acta Naturae, 2017, 9, 58-65.	1.7	8
29	Barnase encapsulation into submicron porous CaCO ₃ particles: studies of loading and enzyme activity. Journal of Materials Chemistry B, 2021, 9, 8823-8831.	5. 8	7
30	Label-free methods of multiparametric surface plasmon resonance and MPQ-cytometry for quantitative real-time measurements of targeted magnetic nanoparticles complexation with living cancer cells. Materials Today Communications, 2021, 29, 102978.	1.9	7
31	3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro. , 2022, 14, 92-100.		7
32	Effect of Surface Modification of Multifunctional Nanocomposite Drug Delivery Carriers with DARPin on Their Biodistribution <i>In Vitro</i> and <i>In Vivo</i> ACS Applied Bio Materials, 0, , .	4.6	6
33	Synthesis of Luminescent Magnetic Nanoparticles with Controllable Surface Properties. , 2018, , .		5
34	Synthesis and Characterization of Hybrid Core-Shell Fe3O4/SiO2 Nanoparticles for Biomedical Applications. Acta Naturae, 2017, 9, 58-65.	1.7	5
35	Development of immunoassays using interferometric real-time registration of their kinetics. Acta Naturae, 2014, 6, 85-95.	1.7	5
36	Complexes of magnetic nanoparticles and scFv antibodies for targeting and visualizing cancer cells. , 2015, , .		3

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Hybrid Core-Shell Fe3 O4 /SiO2 Nanoparticles for Biomedical Applications. Acta Naturae, 2017, 9, 58-65.	1.7	3
38	Polyethyleneimine-coated magnetic nanoparticles for cell labeling and modification. Doklady Biochemistry and Biophysics, 2013, 452, 245-247.	0.9	2
39	Data on characterization of magnetic nanoparticles stabilized with fusion protein of Barstar and C-term part of Mms6. Data in Brief, 2018, 21, 1659-1663.	1.0	2
40	Synthesis and Characterization of Hybrid Core-Shell Fe3 O4 /SiO2 Nanoparticles for Biomedical Applications. Acta Naturae, 2017, 9, 58-65.	1.7	2
41	Lectin-based nanoagents for specific cell labelling and optical visualization. , 2016, , .		0
42	A platform technology for the bioconjugation of nanoparticles in cancer theranostics. New Biotechnology, 2018, 44, S56.	4.4	0
43	Laser-generated titanium nitride nanoparticles for biomedical applications: Synthesis and comprehensive biological study., 2021,,.		0
44	Fourier nanotransducers for phase-sensitive plasmonic biosensing. , 2020, , .		0
45	Plasmonic silver nanoparticles for theranostics of HER2-positive cancer. , 2020, , .		0