Yong Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Halide Perovskites for Photocatalysis. , 2022, , 115-140.		1
2	Triplet Energy Transfer from Lead Halide Perovskite for Highly Selective Photocatalytic 2 + 2 Cycloaddition. ACS Applied Materials & Interfaces, 2022, 14, 25357-25365.	8.0	20
3	2D Perovskite Nanosheets with Intrinsic Chirality. Journal of Physical Chemistry Letters, 2021, 12, 2676-2681.	4.6	27
4	Surface State Passivation Ignited Photoelectrochemical Sensing of Thallium(I) with Ultrathin In ₂ S ₃ Nanosheets. ACS Applied Electronic Materials, 2021, 3, 2490-2496.	4.3	2
5	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
6	Highâ€Resolution Inâ€Situ Synchrotron Xâ€Ray Studies of Inorganic Perovskite CsPbBr ₃ : New Symmetry Assignments and Structural Phase Transitions. Advanced Science, 2021, 8, e2003046.	11.2	9
7	A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events. Journal of the American Chemical Society, 2021, 143, 11361-11369.	13.7	47
8	Aqueous synthesis of alloyed CdSexTe1-x colloidal quantum dots and their In-situ assembly within mesoporous TiO2 for solar cells. Solar Energy, 2020, 196, 513-520.	6.1	15
9	V-rich Bi2S3 nanowire with efficient charge separation and transport for high-performance and robust photoelectrochemical application under visible light. Catalysis Today, 2020, 350, 47-55.	4.4	13
10	Recent Progress in Engineering Metal Halide Perovskites for Efficient Visibleâ€Lightâ€Driven Photocatalysis. ChemSusChem, 2020, 13, 4005-4025.	6.8	79
11	Peak Force Infrared–Kelvin Probe Force Microscopy. Angewandte Chemie, 2020, 132, 16217-16224.	2.0	8
12	Peak Force Infrared–Kelvin Probe Force Microscopy. Angewandte Chemie - International Edition, 2020, 59, 16083-16090.	13.8	16
13	Photoredox Organic Synthesis Employing Heterogeneous Photocatalysts with Emphasis on Halide Perovskite. Chemistry - A European Journal, 2020, 26, 13118-13136.	3.3	39
14	Ultrafast Reaction Mechanisms in Perovskite Based Photocatalytic C–C Coupling. ACS Energy Letters, 2020, 5, 566-571.	17.4	61
15	Lead halide perovskites for photocatalytic organic synthesis. Nature Communications, 2019, 10, 2843.	12.8	263
16	Enhanced photoredox activity of CsPbBr3 nanocrystals by quantitative colloidal ligand exchange. Journal of Chemical Physics, 2019, 151, 204305.	3.0	52
17	Lead sulfide films synthesized by microwave-assisted chemical bath deposition method as efficient counter electrodes for CdS/CdSe sensitized ZnO nanorod solar cells. Solar Energy, 2019, 177, 672-678.	6.1	8
18	Highâ€Performance Photoelectrochemical Water Oxidation with Phosphorusâ€Doped and Metal Phosphide Cocatalystâ€Modified g ₃ N ₄ Formation Through Gas Treatment. ChemSusChem, 2019, 12, 898-907.	6.8	29

YONG YAN

Yong Yan

#	Article	IF	CITATIONS
19	Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. Journal of the American Chemical Society, 2019, 141, 733-738.	13.7	263
20	Phosphorusâ€doped Isotype gâ€C ₃ N ₄ /gâ€C ₃ N ₄ : An Efficient Charge Transfer System for Photoelectrochemical Water Oxidation. ChemCatChem, 2019, 11, 729-736.	t 3.7	42
21	One-pot hydrothermal synthesis of thioglycolic acid-capped CdSe quantum dots-sensitized mesoscopic TiO2 photoanodes for sensitized solar cells. Solar Energy Materials and Solar Cells, 2018, 176, 418-426.	6.2	16
22	Fabrication of three-dimensionally ordered macroporous TiO ₂ film and its application in quantum dots-sensitized solar cells. Optics Express, 2018, 26, A855.	3.4	7
23	Plasmon-Enhanced Layered Double Hydroxide Composite BiVO ₄ Photoanodes: Layering-Dependent Modulation of the Water-Oxidation Reaction. ACS Applied Energy Materials, 2018, 1, 3577-3586.	5.1	52
24	Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nature Energy, 2017, 2, .	39.5	376
25	A graded catalytic–protective layer for an efficient and stable water-splitting photocathode. Nature Energy, 2017, 2, .	39.5	135
26	Assembly of g-C ₃ N ₄ -based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 4507-4515.	2.8	67
27	Fe ₂ PO ₅ â€Encapsulated Reverse Energetic ZnO/Fe ₂ O ₃ Heterojunction Nanowire for Enhanced Photoelectrochemical Oxidation of Water. ChemSusChem, 2017, 10, 2796-2804.	6.8	27
28	Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%. Nature Energy, 2017, 2, .	39.5	172
29	Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 36762-36771.	8.0	114
30	Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Science Advances, 2017, 3, e1700255.	10.3	115
31	Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium. Advanced Materials Interfaces, 2016, 3, 1500669.	3.7	136
32	Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nature Materials, 2016, 15, 456-460.	27.5	215
33	Photoelectrocatalytic Reduction of Carbon Dioxide. , 2015, , 211-233.		6
34	Isotopic Probe Illuminates the Role of the Electrode Surface in Proton Coupled Hydride Transfer Electrochemical Reduction of Pyridinium on Pt(111). Journal of the Electrochemical Society, 2015, 162, H938-H944.	2.9	14
35	Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews, 2015, 51, 986-997.	16.4	291
36	Structure–Function Relationships for Electrocatalytic Water Oxidation by Molecular [Mn ₁₂ O ₁₂] Clusters. Inorganic Chemistry, 2015, 54, 4550-4555.	4.0	26

Yong Yan

#	Article	IF	CITATIONS
37	Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nature Communications, 2015, 6, 7961.	12.8	406
38	Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 2015, 115, 12888-12935.	47.7	1,386
39	Electronic Structure and Optical Properties of α-CH ₃ NH ₃ PbBr ₃ Perovskite Single Crystal. Journal of Physical Chemistry Letters, 2015, 6, 4304-4308.	4.6	136
40	Unprecedented spin localisation in a metal–metal bonded dirhenium complex. Chemical Communications, 2015, 51, 5482-5485.	4.1	9
41	<i>p</i> -Type CuRhO ₂ as a Self-Healing Photoelectrode for Water Reduction under Visible Light. Journal of the American Chemical Society, 2014, 136, 830-833.	13.7	135
42	Hydrogen Bonded Pyridine Dimer: A Possible Intermediate in the Electrocatalytic Reduction of Carbon Dioxide to Methanol. Aerosol and Air Quality Research, 2014, 14, 515-521.	2.1	25
43	Electrochemistry of Aqueous Pyridinium: Exploration of a Key Aspect of Electrocatalytic Reduction of CO ₂ to Methanol. Journal of the American Chemical Society, 2013, 135, 14020-14023.	13.7	152
44	Ancillary Ligand Effects upon Dithiolene Redox Noninnocence in Tungsten Bis(dithiolene) Complexes. Inorganic Chemistry, 2013, 52, 6743-6751.	4.0	24
45	Redox-Controlled Interconversion between Trigonal Prismatic and Octahedral Geometries in a Monodithiolene Tetracarbonyl Complex of Tungsten. Inorganic Chemistry, 2012, 51, 346-361.	4.0	25
46	Monoanionic Molybdenum and Tungsten Tris(dithiolene) Complexes: A Multifrequency EPR Study. Inorganic Chemistry, 2011, 50, 7106-7122.	4.0	55
47	Computational Studies on Response and Binding Selectivity of Fluorescence Sensors. Journal of Physical Chemistry B, 2010, 114, 870-876.	2.6	41
48	A polymorph of tetraethylammonium chloride. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1491-o1491.	0.2	5