
Simon Hubbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MRSD: A quantitative approach for assessing suitability of RNA-seq in the investigation of mis-splicing in Mendelian disease. American Journal of Human Genetics, 2022, 109, 210-222.	2.6	12
2	Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies. Nature Communications, 2022, 13, 801.	5.8	47
3	Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas. Scientific Data, 2022, 9, .	2.4	13
4	Model Parameterization with Quantitative Proteomics: Case Study with Trehalose Metabolism in Saccharomyces cerevisiae. Processes, 2021, 9, 139.	1.3	1
5	Core Fermentation (CoFe) granules focus coordinated glycolytic mRNA localization and translation to fuel glucose fermentation. IScience, 2021, 24, 102069.	1.9	26
6	Integrated multi-omics reveals common properties underlying stress granule and P-body formation. RNA Biology, 2021, 18, 655-673.	1.5	10
7	A proteome-integrated, carbon source dependent genetic regulatory network in <i>Saccharomyces cerevisiae</i> . Molecular Omics, 2020, 16, 59-72.	1.4	11
8	Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy. PLoS ONE, 2020, 15, e0236679.	1.1	5
9	Title is missing!. , 2020, 15, e0236679.		0
10	Title is missing!. , 2020, 15, e0236679.		0
11	Title is missing!. , 2020, 15, e0236679.		0
12	Title is missing!. , 2020, 15, e0236679.		0
13	Disease modeling of core pre-mRNA splicing factor haploinsufficiency. Human Molecular Genetics, 2019, 28, 3704-3723.	1.4	24
14	Glycolytic flux in <i>Saccharomyces cerevisiae</i> is dependent on RNA polymerase III and its negative regulator Maf1. Biochemical Journal, 2019, 476, 1053-1082.	1.7	9
15	A quantitative and temporal map of proteostasis during heat shock in <i>Saccharomyces cerevisiae</i> . Molecular Omics, 2018, 14, 37-52.	1.4	17
16	Ribosomal flavours: an acquired taste for specific mRNAs?. Biochemical Society Transactions, 2018, 46, 1529-1539.	1.6	8
17	Archetypal transcriptional blocks underpin yeast gene regulation in response to changes in growth conditions. Scientific Reports, 2018, 8, 7949.	1.6	6
18	Dynamic Acclimation to High Light in Arabidopsis thaliana Involves Widespread Reengineering of the Leaf Proteome. Frontiers in Plant Science, 2017, 8, 1239.	1.7	39

#	Article	IF	CITATIONS
19	Dynamic changes in elF4F-mRNA interactions revealed by global analyses of environmental stress responses. Genome Biology, 2017, 18, 201.	3.8	37
20	Absolute protein quantification of the yeast chaperome under conditions of heat shock. Proteomics, 2016, 16, 2128-2140.	1.3	18
21	Direct and Absolute Quantification of over 1800 Yeast Proteins via Selected Reaction Monitoring. Molecular and Cellular Proteomics, 2016, 15, 1309-1322.	2.5	80
22	Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics. Journal of Proteome Research, 2016, 15, 2945-2959.	1.8	46
23	The mzqLibrary – An open source Java library supporting the HUPOâ€PSI quantitative proteomics standard. Proteomics, 2015, 15, 3152-3162.	1.3	5
24	Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in <i>Saccharomyces cerevisiae</i> . Proteomics, 2015, 15, 3126-3139.	1.3	12
25	Representation of selectedâ€reaction monitoring data in the mzQuantML data standard. Proteomics, 2015, 15, 2592-2596.	1.3	7
26	Focus on Quantitative Proteomics. Proteomics, 2015, 15, 3101-3103.	1.3	2
27	Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p. Scientific Reports, 2015, 5, 15518.	1.6	51
28	Global mRNA selection mechanisms for translation initiation. Genome Biology, 2015, 16, 10.	3.8	92
29	The 4E-BP Caf20p Mediates Both elF4E-Dependent and Independent Repression of Translation. PLoS Genetics, 2015, 11, e1005233.	1.5	36
30	The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response. PLoS Genetics, 2015, 11, e1004903.	1.5	36
31	Computational phosphoproteomics: From identification to localization. Proteomics, 2015, 15, 950-963.	1.3	24
32	Puf3p induces translational repression of genes linked to oxidative stress. Nucleic Acids Research, 2014, 42, 1026-1041.	6.5	34
33	Analysis of Chaperone Network Throughput. , 2014, , 3-23.		1
34	Quantitative analysis of chaperone network throughput in budding yeast. Proteomics, 2013, 13, 1276-1291.	1.3	33
35	Prediction of Missed Proteolytic Cleavages for the Selection of Surrogate Peptides for Quantitative Proteomics. OMICS A Journal of Integrative Biology, 2012, 16, 449-456.	1.0	72
36	The mzIdentML Data Standard for Mass Spectrometry-Based Proteomics Results. Molecular and Cellular Proteomics, 2012, 11, M111.014381-1-M111.014381-10.	2.5	175

#	Article	IF	CITATIONS
37	Addressing Statistical Biases in Nucleotide-Derived Protein Databases for Proteogenomic Search Strategies. Journal of Proteome Research, 2012, 11, 5221-5234.	1.8	83
38	A Critical Appraisal of Techniques, Software Packages, and Standards for Quantitative Proteomic Analysis. OMICS A Journal of Integrative Biology, 2012, 16, 431-442.	1.0	50
39	FDRAnalysis: A Tool for the Integrated Analysis of Tandem Mass Spectrometry Identification Results from Multiple Search Engines. Journal of Proteome Research, 2011, 10, 2088-2094.	1.8	18
40	Global absolute quantification of a proteome: Challenges in the deployment of a QconCAT strategy. Proteomics, 2011, 11, 2957-2970.	1.3	103
41	UKPMC: a full text article resource for the life sciences. Nucleic Acids Research, 2011, 39, D58-D65.	6.5	40
42	CONSeQuence: Prediction of Reference Peptides for Absolute Quantitative Proteomics Using Consensus Machine Learning Approaches. Molecular and Cellular Proteomics, 2011, 10, M110.003384.	2.5	121
43	BioMart Central Portal: an open database network for the biological community. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar041-bar041.	1.4	145
44	Distributions of Ion Series in ETD and CID Spectra: Making a Comparison. Methods in Molecular Biology, 2011, 696, 327-337.	0.4	4
45	Investigating protein isoforms <i>via</i> proteomics: A feasibility study. Proteomics, 2010, 10, 1127-1140.	1.3	41
46	Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Research, 2010, 38, 8039-8050.	6.5	47
47	Computational Approaches to Peptide Identification via Tandem MS. Methods in Molecular Biology, 2010, 604, 23-42.	0.4	5
48	An Introduction to Proteome Bioinformatics. Methods in Molecular Biology, 2010, 604, 1-5.	0.4	5
49	SILACAnalyzer - A Tool for Differential Quantitation of Stable Isotope Derived Data. Lecture Notes in Computer Science, 2010, , 45-55.	1.0	6
50	Cross Species Proteomics. Methods in Molecular Biology, 2010, 604, 123-135.	0.4	23
51	Recent Developments in Proteome Informatics for Mass Spectrometry Analysis. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 194-202.	0.6	14
52	Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics, 2009, 10, 61.	1.2	35
53	Upstream sequence elements direct post-transcriptional regulation of gene expression under stress conditions in yeast. BMC Genomics, 2009, 10, 7.	1.2	87
54	Expression screening and annotation of a zebrafish myoblast cDNA library. Gene Expression Patterns, 2009, 9, 73-82.	0.3	8

4

#	Article	IF	CITATIONS
55	Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines. Proteomics, 2009, 9, 1220-1229.	1.3	91
56	Getting a grip on proteomics data – Proteomics Data Collection (ProDaC). Proteomics, 2009, 9, 3928-3933.	1.3	15
57	Observations on the detection of b―and yâ€ŧype ions in the collisionally activated decomposition spectra of protonated peptides. Rapid Communications in Mass Spectrometry, 2009, 23, 1508-1514.	0.7	38
58	Analysis of the trypanosome flagellar proteome using a combined electron transfer/collisionally activated dissociation strategy. Journal of the American Society for Mass Spectrometry, 2009, 20, 167-175.	1.2	36
59	Predicted transcription factor binding sites as predictors of operons in Escherichia coli and Streptomyces coelicolor. BMC Genomics, 2008, 9, 79.	1.2	9
60	PepSeeker: Mining Information from Proteomic Data. Methods in Molecular Biology, 2008, 484, 319-332.	0.4	5
61	ISPIDER Central: an integrated database web-server for proteomics. Nucleic Acids Research, 2008, 36, W485-W490.	6.5	18
62	Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE, 2008, 3, e2300.	1.1	169
63	Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi. Genome Research, 2007, 17, 1809-1822.	2.4	94
64	Human and mouse homo-oligomeric meprin A metalloendopeptidase: substrate and inhibitor specificities. Biological Chemistry, 2007, 388, 1163-1172.	1.2	15
65	Characterising alternate splicing and tissue specific expression in the chicken from ESTs. Cytogenetic and Genome Research, 2007, 117, 268-277.	0.6	5
66	A Methodology for Comparative Functional Genomics. Journal of Integrative Bioinformatics, 2007, 4, 112-122.	1.0	1
67	Prediction of Missed Cleavage Sites in Tryptic Peptides Aids Protein Identification in Proteomics. Journal of Proteome Research, 2007, 6, 399-408.	1.8	152
68	An informatic pipeline for the data capture and submission of quantitative proteomic data using iTRAQ. Proteome Science, 2007, 5, 4.	0.7	21
69	Capture and analysis of quantitative proteomic data. Proteomics, 2007, 7, 2787-2799.	1.3	54
70	The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics. Nature Biotechnology, 2007, 25, 1127-1133.	9.4	96
71	e-Fungi: a data resource for comparative analysis of fungal genomes. BMC Genomics, 2007, 8, 426.	1.2	32
72	A kingdom-specific protein domain HMM library for improved annotation of fungal genomes. BMC Genomics, 2007, 8, 97.	1.2	12

#	Article	IF	CITATIONS
73	Analysis of gene expression in operons of Streptomyces coelicolor. Genome Biology, 2006, 7, R46.	13.9	34
74	PepSeeker: a database of proteome peptide identifications for investigating fragmentation patterns. Nucleic Acids Research, 2006, 34, D649-D654.	6.5	35
75	Differential Expression of Ion Channel Transcripts in Atrial Muscle and Sinoatrial Node in Rabbit. Circulation Research, 2006, 99, 1384-1393.	2.0	134
76	Global Translational Responses to Oxidative Stress Impact upon Multiple Levels of Protein Synthesis. Journal of Biological Chemistry, 2006, 281, 29011-29021.	1.6	357
77	Data Access and Integration in the ISPIDER Proteomics Grid. Lecture Notes in Computer Science, 2006, , 3-18.	1.0	14
78	Mass spectrometric data mining for protein sequences. , 2005, , .		0
79	Transcriptome analysis for the chicken based on 19,626 finished cDNA sequences and 485,337 expressed sequence tags. Genome Research, 2005, 15, 174-183.	2.4	79
80	Global Gene Expression Profiling Reveals Widespread yet Distinctive Translational Responses to Different Eukaryotic Translation Initiation Factor 2B-Targeting Stress Pathways. Molecular and Cellular Biology, 2005, 25, 9340-9349.	1.1	85
81	Conservation of Orientation and Sequence in Protein Domain–Domain Interactions. Journal of Molecular Biology, 2005, 345, 1265-1279.	2.0	35
82	A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 2004, 432, 717-722.	13.7	391
83	PEDRo: A database for storing, searching and disseminating experimental proteomics data. BMC Genomics, 2004, 5, 68.	1.2	58
84	Improved prediction for N-termini of α-helices using empirical information. Proteins: Structure, Function and Bioinformatics, 2004, 57, 322-330.	1.5	14
85	A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nature Biotechnology, 2003, 21, 247-254.	9.4	246
86	The chicken as a model for large-scale analysis of vertebrate gene function. Nature Reviews Genetics, 2003, 4, 87-98.	7.7	154
87	SiteSeer: visualisation and analysis of transcription factor binding sites in nucleotide sequences. Nucleic Acids Research, 2003, 31, 3572-3575.	6.5	16
88	A critical assessment of the secondary structure α-helices and their termini in proteins. Protein Engineering, Design and Selection, 2002, 15, 545-554.	1.0	15
89	A Comprehensive Collection of Chicken cDNAs. Current Biology, 2002, 12, 1965-1969.	1.8	305
90	Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics, 2002, 2, 157-163.	1.3	58

#	Article	IF	CITATIONS
91	Comparative bioinformatic analysis of complete proteomes and protein parameters for cross-species identification in proteomics. Proteomics, 2002, 2, 1392-1405.	1.3	68
92	Sequence Search Algorithms for Single Pass Sequence Identification: Does One Size Fit All?. Comparative and Functional Genomics, 2001, 2, 4-9.	2.0	5
93	A combination of chemical derivatisation and improved bioinformatic tools optimises protein identification for proteomics. Electrophoresis, 2001, 22, 552-559.	1.3	61
94	Bioinformatic assessment of mass spectrometric chemical derivatisation techniques for proteome database searching. Proteomics, 2001, 1, 1368-1377.	1.3	25
95	Effect of polymorphisms on ligand binding by mouse major urinary proteins. Protein Science, 2001, 10, 411-417.	3.1	59
96	Marked Differences between Metalloproteases Meprin A and B in Substrate and Peptide Bond Specificity. Journal of Biological Chemistry, 2001, 276, 13248-13255.	1.6	103
97	Mice, Mups and Myths: Structure-Function Relationships of the Major Urinary Proteins. , 2001, , 149-156.		10
98	Conceptual modelling of genomic information. Bioinformatics, 2000, 16, 548-557.	1.8	96
99	Proteolysis of Native Proteins. Journal of Biological Chemistry, 1999, 274, 1108-1115.	1.6	21
100	Ligands of Urinary Lipocalins from the Mouse: Uptake of Environmentally Derived Chemicals. Journal of Chemical Ecology, 1998, 24, 1127-1140.	0.9	24
101	The structural aspects of limited proteolysis of native proteins. BBA - Proteins and Proteomics, 1998, 1382, 191-206.	2.1	351
102	Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Protein Engineering, Design and Selection, 1998, 11, 349-359.	1.0	109
103	A Functional Role for Protein Cavities in Domain:Domain Motions. Journal of Molecular Biology, 1996, 261, 289-300.	2.0	49
104	Limited proteolysis of native proteins: The interaction between avidin and proteinase K. Protein Science, 1995, 4, 1337-1345.	3.1	52
105	Comparison of atomic solvation parametric sets: Applicability and limitations in protein folding and binding. Protein Science, 1995, 4, 2499-2509.	3.1	84
106	Evidence on close packing and cavities in proteins. Current Opinion in Biotechnology, 1995, 6, 375-381.	3.3	31
107	Detection of internal cavities in globular proteins. Protein Engineering, Design and Selection, 1995, 8, 1011-1015.	1.0	34
108	Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Science, 1994, 3, 757-768.	3.1	186

#	Article	IF	CITATIONS
109	Cavities and packing at protein interfaces. Protein Science, 1994, 3, 2194-2206.	3.1	141
110	Intramolecular cavities in globular proteins. Protein Engineering, Design and Selection, 1994, 7, 613-626.	1.0	167
111	Substrate recognition by proteinases. Faraday Discussions, 1992, 93, 13.	1.6	19
112	Molecular recognition. Journal of Molecular Biology, 1991, 220, 507-530.	2.0	358
113	Cytosolic aspartate aminotransferase moonlights as a ribosome-binding modulator of Gcn2 activity during oxidative stress. ELife, 0, 11, .	2.8	5