
Mareike Hesse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced decline of lung diffusing capacity in COPD patients with diabetes and metformin treatment. Scientific Reports, 2022, 12, 1435.	1.6	8
2	Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in distal honeycomb cysts in idiopathic pulmonary fibrosis. European Respiratory Journal, 2022, 59, 2102373.	3.1	16
3	Regenerative Medicine and the Hope for a Cure. Clinics in Chest Medicine, 2021, 42, 365-373.	0.8	0
4	A drug screen with approved compounds identifies amlexanox as a novel Wnt/β atenin activator inducing lung epithelial organoid formation. British Journal of Pharmacology, 2021, 178, 4026-4041.	2.7	10
5	WNT Signalling in Lung Physiology and Pathology. Handbook of Experimental Pharmacology, 2021, 269, 305-336.	0.9	10
6	Lung regeneration: implications of the diseased niche and ageing. European Respiratory Review, 2020, 29, 200222.	3.0	18
7	Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nature Communications, 2020, 11, 3559.	5.8	378
8	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Research, 2020, 6, 00123-2020.	1.1	2
9	Senescent Cells in IPF: Locked in Repair?. Frontiers in Medicine, 2020, 7, 606330.	1.2	11
10	Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature, 2020, 588, 151-156.	13.7	81
11	ERS International Congress, Madrid, 2019: highlights from the Basic and Translational Science Assembly. ERJ Open Research, 2020, 6, 00350-2019.	1.1	1
12	Chronic WNT/β-catenin signaling induces cellular senescence in lung epithelial cells. Cellular Signalling, 2020, 70, 109588.	1.7	68
13	ARTD1 in Myeloid Cells Controls the IL-12/18–IFN-γ Axis in a Model of Sterile Sepsis, Chronic Bacterial Infection, and Cancer. Journal of Immunology, 2019, 202, 1406-1416.	0.4	16
14	The Oncogene ECT2 Contributes to a Hyperplastic, Proliferative Lung Epithelial Cell Phenotype in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 713-726.	1.4	15
15	Late Breaking Abstract - WNT/ß-catenin signaling induces cellular senescence in lung alveolar epithelial cells. , 2019, , .		1
16	Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respiratory Research, 2018, 19, 175.	1.4	90
17	Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L682-L696.	1.3	21
18	Increased Extracellular Vesicles Mediate WNT5A Signaling in Idiopathic Pulmonary Fibrosis. American	2.5	127

MAREIKE HESSE

#	Article	IF	CITATIONS
19	S100a4 Is Secreted by Alternatively Activated Alveolar Macrophages and Promotes Activation of Lung Fibroblasts in Pulmonary Fibrosis. Frontiers in Immunology, 2018, 9, 1216.	2.2	64
20	Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Scientific Reports, 2018, 8, 12983.	1.6	38
21	Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin–driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 172-185.	2.5	85
22	An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L896-L902.	1.3	144
23	Pulmonary CCR2 ⁺ CD4 ⁺ T cells are immune regulatory and attenuate lung fibrosis development. Thorax, 2017, 72, 1007-1020.	2.7	26
24	Senolytic drugs targetÂalveolar epithelial cell function and attenuate experimental lung fibrosis <i>ex vivo</i> . European Respiratory Journal, 2017, 50, 1602367.	3.1	267
25	Early Career Members at the ERS LSC 2017: mechanistic overlap between chronic lung injury and cancer. Breathe, 2017, 13, 323-326.	0.6	1
26	LSC - 2017 - Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. , 2017, , .		2
27	WNT Signaling in Lung Aging and Disease. Annals of the American Thoracic Society, 2016, 13, S411-S416.	1.5	50
28	LATE-BREAKING ABSTRACT: Anti-fibrotic effects of nintedanib and pirfenidone in 2D versus 3D lung cultures. , 2016, , .		2
29	ARTD1-induced poly-ADP-ribose formation enhances PPARÎ ³ ligand binding and co-factor exchange. Nucleic Acids Research, 2015, 43, 129-142.	6.5	46
30	PARP Inhibitor with Selectivity Toward ADP-Ribosyltransferase ARTD3/PARP3. ACS Chemical Biology, 2013, 8, 1698-1703.	1.6	48
31	<i>ARTD1</i> deletion causes increased hepatic lipid accumulation in mice fed a highâ€fat diet and impairs adipocyte function and differentiation. FASEB Journal, 2012, 26, 2631-2638.	0.2	41
32	Poly(ADP-Ribose)Polymerase-1 (PARP1) Controls Adipogenic Gene Expression and Adipocyte Function. Molecular Endocrinology, 2012, 26, 79-86.	3.7	64
33	Hyperoxia modulates TGF-β/BMP signaling in a mouse model of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L537-L549.	1.3	212