
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of lattice orientation on growth and structure of graphene on Cu(0 0 1). Carbon, 2015, 90, 284-290.	5.4	11
2	Real-time observation of epitaxial graphene domain reorientation. Nature Communications, 2015, 6, 6880.	5.8	33
3	Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges. Science, 2014, 343, 163-167.	6.0	479
4	Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16670-16675.	3.3	64
5	Determination of the surface structure of CeO2(111) by low-energy electron diffraction. Journal of Chemical Physics, 2013, 139, 114703.	1.2	12
6	The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013, 342, 720-723.	6.0	977
7	Intercalation Pathway in Many-Particle LiFePO ₄ Electrode Revealed by Nanoscale State-of-Charge Mapping. Nano Letters, 2013, 13, 866-872.	4.5	206
8	Oxidation stages of Ni electrodes in solid oxide fuel cell environments. Physical Chemistry Chemical Physics, 2013, 15, 8334.	1.3	47
9	Insight into Magnetite's Redox Catalysis from Observing Surface Morphology during Oxidation. Journal of the American Chemical Society, 2013, 135, 10091-10098.	6.6	53
10	Low-Energy Electron Microscopy. Springer Series in Surface Sciences, 2013, , 531-561.	0.3	5
11	Room temperature in-plane âŸ`100⟩ magnetic easy axis for Fe3O4/SrTiO3(001):Nb grown by infrared pulsed laser deposition. Journal of Applied Physics, 2013, 114, .	1.1	37
12	Resonance Raman spectroscopy of G-line and folded phonons in twisted bilayer graphene with large rotation angles. Applied Physics Letters, 2013, 103, .	1.5	46
13	Viable thermionic emission from graphene-covered metals. Applied Physics Letters, 2012, 100, 181604.	1.5	21
14	Hydrogen-induced reversible spin-reorientation transition and magnetic stripe domain phase in bilayer Co on Ru(0001). Physical Review B, 2012, 85, .	1.1	14
15	Electrochemical intermediate species and reaction pathway in H2 oxidation on solid electrolytes. Chemical Communications, 2012, 48, 8338.	2.2	15
16	CO-Assisted Subsurface Hydrogen Trapping in Pd(111) Films. Journal of Physical Chemistry Letters, 2012, 3, 87-91.	2.1	16
17	Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions. Physical Review B, 2012, 85, .	1.1	89
18	Oxidation Pathways in Bicomponent Ultrathin Iron Oxide Films. Journal of Physical Chemistry C, 2012, 116, 11539-11547.	1.5	44

#	Article	IF	CITATIONS
19	Growth structure and work function of bilayer graphene on Pd(111). Physical Review B, 2012, 85, .	1.1	37
20	Growth from below: bilayer graphene on copper by chemical vapor deposition. New Journal of Physics, 2012, 14, 093028.	1.2	150
21	Graphene growth on metal surfaces. MRS Bulletin, 2012, 37, 1158-1165.	1.7	81
22	Extraordinary epitaxial alignment of graphene islands on Au(111). New Journal of Physics, 2012, 14, 053008.	1.2	78
23	Magnetism in nanometer-thick magnetite. Physical Review B, 2012, 85, .	1.1	71
24	Highly Enhanced Concentration and Stability of Reactive Ce ³⁺ on Doped CeO ₂ Surface Revealed In Operando. Chemistry of Materials, 2012, 24, 1876-1882.	3.2	169
25	Origin of the mosaicity in graphene grown on Cu(111). Physical Review B, 2011, 84, .	1.1	183
26	Growth from Below: Graphene Bilayers on Ir(111). ACS Nano, 2011, 5, 2298-2306.	7.3	105
27	Electronic structure of graphene on single-crystal copper substrates. Physical Review B, 2011, 84, .	1.1	148
28	Real-space study of the growth of magnesium on ruthenium. Surface Science, 2011, 605, 903-911.	0.8	8
29	Valence band circular dichroism in non-magnetic Ag/Ru(0001) at normal emission. Journal of Physics Condensed Matter, 2011, 23, 305006.	0.7	4
30	In-plane orientation effects on the electronic structure, stability, and Raman scattering of monolayer graphene on Ir(111). Physical Review B, 2011, 83, .	1.1	146
31	Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nature Materials, 2010, 9, 944-949.	13.3	257
32	Orientation-dependent work function of graphene on Pd(111). Applied Physics Letters, 2010, 97, .	1.5	122
33	Periodic step arrays on the aperiodic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>i</mml:mi></mml:math> -Al-Pd-Mn quasicrystal surface at high temperature. Physical Review B, 2010, 81, .	1.1	3
34	Note: Fixture for characterizing electrochemical devices in-operando in traditional vacuum systems. Review of Scientific Instruments, 2010, 81, 086104.	0.6	39
35	In Situ Characterization of Ceria Oxidation States in High-Temperature Electrochemical Cells with Ambient Pressure XPS. Journal of Physical Chemistry C, 2010, 114, 19853-19861.	1.5	81
36	Graphene Islands on Cu Foils: The Interplay between Shape, Orientation, and Defects. Nano Letters, 2010, 10, 4890-4896.	4.5	337

#	Article	IF	CITATIONS
37	Oxidation of Graphene on Metals. Journal of Physical Chemistry C, 2010, 114, 5134-5140.	1.5	111
38	Structure of ultrathin Pd films determined by low-energy electron microscopy and diffraction. New Journal of Physics, 2010, 12, 023023.	1.2	15
39	Real Space Observations of Magnesium Hydride Formation and Decomposition. Chemistry of Materials, 2010, 22, 1291-1293.	3.2	5
40	Measuring individual overpotentials in an operating solid-oxide electrochemical cell. Physical Chemistry Chemical Physics, 2010, 12, 12138.	1.3	48
41	Measuring the magnetization of three monolayer thick Co islands and films by x-ray dichroism. Physical Review B, 2009, 80, .	1.1	4
42	Work function of a quasicrystal surface: Icosahedral Al–Pd–Mn. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1249-1250.	0.9	18
43	Three-fold diffraction symmetry in epitaxial graphene and the SiC substrate. Physical Review B, 2009, 80, .	1.1	15
44	Structure and magnetism in ultrathin iron oxides characterized by low energy electron microscopy. Journal of Physics Condensed Matter, 2009, 21, 314011.	0.7	29
45	How metal films de-wet substrates—identifying the kinetic pathways and energetic driving forces. New Journal of Physics, 2009, 11, 043001.	1.2	29
46	Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0001). Carbon, 2009, 47, 1806-1813.	5.4	104
47	Factors influencing graphene growth on metal surfaces. New Journal of Physics, 2009, 11, 063046.	1.2	241
48	Graphene growth by metal etching on Ru(0001). Physical Review B, 2009, 80, .	1.1	51
49	Defects of graphene on Ir(111): Rotational domains and ridges. Physical Review B, 2009, 80, .	1.1	181
50	Evidence for graphene growth by C cluster attachment. New Journal of Physics, 2008, 10, 093026.	1.2	262
51	Structure and magnetism of ultra-thin chromium layers on W(110). New Journal of Physics, 2008, 10, 013005.	1.2	24
52	Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001). New Journal of Physics, 2008, 10, 073024.	1.2	34
53	Stability of ultrathin alumina layers on NiAl(110). Physical Review B, 2008, 77, . Nanoscale Periodicity in Stripe-Forming Systems at High Temperature: <mml:math< td=""><td>1.1</td><td>21</td></mml:math<>	1.1	21
54	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>Au</mml:mi> <mml:mo>/</mml:mo> <mml:mi mathvariant="normal">W<mml:mo stretchy="false">(<mml:mn>110</mml:mn><mml:mo) 0="" 10="" 42="" 50="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>2.9 (stretchy='</td><td>18 "false">)</td></mml:mo)></mml:mo </mml:mi 	2.9 (stretchy='	18 "false">)

#	Article	IF	CITATIONS
55	Evolution of a Reactive Surface via Subsurface Defect Dynamics. Physical Review Letters, 2007, 99, 026101.	2.9	9
56	Structure and morphology of ultrathinCo/Ru(0001) films. New Journal of Physics, 2007, 9, 80-80.	1.2	40
57	Imaging Spin-Reorientation Transitions in Consecutive Atomic Co Layers on Ru(0001). Physical Review Letters, 2006, 96, 147202.	2.9	68
58	Deterministic Positioning of Three-Dimensional Structures on a Substrate by Film Growth. Nano Letters, 2006, 6, 858-861.	4.5	12
59	Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001). Surface Science, 2006, 600, 1735-1757.	0.8	60
60	Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace. Surface Science, 2006, 600, L105-L109.	0.8	50
61	Electron reflectivity measurements of Ag adatom concentrations on W(110). Surface Science, 2006, 600, 4062-4066.	0.8	27
62	Surface and interface segregation in β-NiAl with and without Pt addition. Scripta Materialia, 2006, 54, 937-941.	2.6	79
63	Translation-related domain boundaries form to relieve strain in a thin alumina film on NiAl (110). Applied Physics Letters, 2006, 88, 141902.	1.5	18
64	Self-assembly and dynamics of oxide nanorods on NiAl(110). Physical Review B, 2005, 71, .	1.1	23
65	Surface dynamics dominated by bulk thermal defects: The case ofNiAl(110). Physical Review B, 2005, 71, .	1.1	14
66	Twin Boundaries Can Be Moved by Step Edges During Film Growth. Physical Review Letters, 2005, 95, 166105.	2.9	16
67	The Importance of Threading Dislocations on the Motion of Domain Boundaries in Thin Films. Science, 2005, 308, 1303-1305.	6.0	20
68	Lattice dynamics ofNaAlH4from high-temperature single-crystal Raman scattering andab initiocalculations: Evidence of highly stableAlH4â^anions. Physical Review B, 2005, 71, .	1.1	71
69	Enhanced Self-Diffusion on Cu(111) by Trace Amounts of S: Chemical-Reaction-Limited Kinetics. Physical Review Letters, 2004, 93, 166101.	2.9	54
70	Crystal growth rate limited by step length — the case of oxygen-deficient TiO2 exposed to oxygen. Journal of Crystal Growth, 2004, 270, 691-698.	0.7	10
71	Crucial role of substrate steps in de-wetting of crystalline thin films. Surface Science, 2004, 570, L297-L303.	0.8	45
72	The 1×1/1×2 phase transition of the TiO2() surface––variation of transition temperature with crystal composition. Surface Science, 2003, 527, L203-L212.	0.8	29

#	Article	IF	CITATIONS
73	Spatially resolved dynamics of the TiO2(110) surface reconstruction. Surface Science, 2003, 540, 157-171.	0.8	23
74	Growth regimes of the oxygen-deficient TiO2(110) surface exposed to oxygen. Surface Science, 2003, 543, 185-206.	0.8	33
75	Role of Bulk Thermal Defects in the Reconstruction Dynamics of theTiO2(110)Surface. Physical Review Letters, 2003, 90, 046104.	2.9	46
76	Structure of theαâ^'Al2O3(0001)surface from low-energy electron diffraction: Al termination and evidence for anomalously large thermal vibrations. Physical Review B, 2002, 65, .	1.1	115
77	Imaging the crystallization and growth of oxide domains on the NiAl(110) surface. Surface Science, 2001, 474, L165-L172.	0.8	16
78	Vacancies in solids and the stability of surface morphology. Nature, 2001, 412, 622-625.	13.7	107
79	The surface structure of α-Al2O3 determined by low-energy electron diffraction: aluminum termination and evidence for anomolously large thermal vibrations. Surface Science, 2000, 464, L732-L738.	0.8	81
80	Small, uniform, and thermally stable silver particles on TiO2(110)-(1×1). Surface Science, 2000, 464, L708-L714.	0.8	68
81	Self-limiting growth of copper islands on TiO2(110)-(1×1). Surface Science, 2000, 450, 78-97.	0.8	98
82	On the initial stages of AlN thin-film growth onto (0001) oriented Al2O3 substrates by molecular beam epitaxy. Journal of Applied Physics, 1999, 85, 466-472.	1.1	37
83	Preferred orientation in carbon and boron nitride: Does a thermodynamic theory of elastic strain energy get it right?. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2749-2752.	0.9	11
84	Systematic study of diamond film deposition in an atmospheric-pressure stagnation-flow flame reactor. Diamond and Related Materials, 1998, 7, 1320-1327.	1.8	1
85	Preparation of wurtzitic AlN thin films with a novel crystallographic alignment on MgO substrates by molecular-beam epitaxy. Journal of Materials Research, 1998, 13, 1414-1417.	1.2	4
86	Orientation-dependence of elastic strain energy in hexagonal and cubic boron nitride layers in energetically deposited BN films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 196-200.	0.9	33
87	The synthesis, characterization, and mechanical properties of thick, ultrahard cubic boron nitride films deposited by ion-assisted sputtering. Journal of Applied Physics, 1997, 82, 1617-1625.	1.1	97
88	How plastic deformation can produce texture in graphitic films of boron nitride, carbon nitride, and carbon. Diamond and Related Materials, 1997, 6, 1219-1225.	1.8	19
89	Orientation relationships in heteroepitaxial aluminum films on sapphire. Thin Solid Films, 1997, 299, 110-114.	0.8	73
90	Review of advances in cubic boron nitride film synthesis. Materials Science and Engineering Reports, 1997, 21, 47-100.	14.8	567

#	Article	IF	CITATIONS
91	Analysis of residual stress in cubic boron nitride thin films using micromachined cantilever beams. Diamond and Related Materials, 1996, 5, 1295-1302.	1.8	62
92	On the low-temperature threshold for cubic boron nitride formation in energetic film deposition. Diamond and Related Materials, 1996, 5, 1519-1526.	1.8	24
93	Largeâ€∎rea diamond deposition in an atmospheric pressure stagnationâ€flow reactor. Applied Physics Letters, 1996, 68, 2158-2160.	1.5	16
94	Substrate effects in cubic boron nitride film formation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 251-255.	0.9	49
95	Thermal stability of amorphous carbon films grown by pulsed laser deposition. Applied Physics Letters, 1996, 68, 1643-1645.	1.5	122
96	Micromachined silicon cantilever beams for thin-film stress measurement. Thin Solid Films, 1996, 287, 214-219.	0.8	11
97	The relationship between the spatially resolved field emission characteristics and the raman spectra of a nanocrystalline diamond cold cathode. Applied Physics Letters, 1996, 69, 3842-3844.	1.5	144
98	Crystallographic texture in cubic boron nitride thin films. Journal of Applied Physics, 1996, 79, 3567-3571.	1.1	56
99	Growth of cubic BN films on β‣iC by ionâ€assisted pulsed laser deposition. Applied Physics Letters, 1995, 66, 2813-2815.	1.5	77
100	On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition. Journal of Materials Research, 1994, 9, 2925-2938.	1.2	201
101	Microstructure of cubic boron nitride thin films grown by ionâ€assisted pulsed laser deposition. Journal of Applied Physics, 1994, 76, 295-303.	1.1	102
102	Comment on â€~â€~Growth and characterization of epitaxial cubic boron nitride films on silicon''. Physical Review B, 1994, 50, 8907-8910.	1.1	7
103	Evidence for rhombohedral boron nitride in cubic boron nitride films grown by ion-assisted deposition. Physical Review B, 1994, 50, 7884-7887.	1.1	46
104	Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates. Thin Solid Films, 1994, 253, 130-135.	0.8	61
105	Pulsed laser deposition of BN onto silicon (100) substrates at 600 ŰC. Thin Solid Films, 1994, 237, 48-56.	0.8	52
106	Determination of diamond film quality during growth using in situ Raman spectroscopy. Diamond and Related Materials, 1994, 3, 22-29.	1.8	15
107	Ionâ€assisted pulsed laser deposition of cubic boron nitride films. Journal of Applied Physics, 1994, 76, 3088-3101.	1.1	235
108	Diamond deposition on polycrystalline films of cubic boron nitride. Applied Physics Letters, 1993, 63, 1342-1344.	1.5	16

#	Article	IF	CITATIONS
109	Scaleable stagnationâ€flow reactors for uniform materials deposition: Application to combustion synthesis of diamond. Applied Physics Letters, 1993, 63, 1498-1500.	1.5	29
110	Anharmonic effects and the two-particle continuum in the Raman spectra ofYBa2Cu3O6.9,TlBa2CaCu2O7, andTl2Ba2CaCu2O8. Physical Review B, 1993, 47, 8910-8916.	1.1	42
111	Electron Microscopy Study of Cubic Boron Nitride Thin Films Grown by Ion -Assisted Pulsed Laser Deposition. Materials Research Society Symposia Proceedings, 1993, 311, 373.	0.1	0
112	InsituRaman spectroscopy of diamond during growth in a hot filament reactor. Journal of Applied Physics, 1992, 72, 2001-2005.	1.1	18
113	Cubic boron nitride formation on Si (100) substrates at room temperature by pulsed laser deposition. Applied Physics Letters, 1992, 61, 2406-2408.	1.5	38
114	Temperature dependence of the phonon frequencies, linewidths, and Raman-continuum scattering of single-domainY0.56Pr0.44Ba2Cu3O7. Physical Review B, 1992, 46, 11958-11964.	1.1	8
115	Pulsed Excimer Laser Ablation Deposition of Boron Nitride on Si (100) Substrates. Materials Research Society Symposia Proceedings, 1992, 242, 593.	0.1	0
116	Pulsed Microwave Processing of High-TC Superconducting Films. Materials Research Society Symposia Proceedings, 1992, 269, 187.	0.1	0
117	Dependence of the excitation wavelength on the Raman-active phonons of YBa2Cu3O7. Physica C: Superconductivity and Its Applications, 1992, 200, 315-322.	0.6	6
118	Comparison of the Raman-active phonons of YBa2Cu3O7 crystals grown in gold and zirconia crucibles. Physica C: Superconductivity and Its Applications, 1992, 192, 331-350.	0.6	20
119	Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 851-855.	1.4	33
120	Effect of gold-doping on the energy gap of YBa2Cu3O7 as determined by Raman scattering. Solid State Communications, 1991, 79, 359-362.	0.9	11
121	Site-selective oxygen-isotope substitution inYBa2Cu3O7â^îſ. Physical Review B, 1991, 44, 9556-9561.	1.1	15
122	Temperature dependence of the linewidths of the Raman-active phonons ofYBa2Cu3O7: Evidence for a superconducting gap between 440 and 500cmâ^'1. Physical Review B, 1991, 43, 13751-13754.	1.1	52
123	SuperconductingLa2CuO4+xprepared by oxygenation at high pressure: A Raman-scattering study. Physical Review B, 1991, 43, 7883-7890.	1.1	24
124	<title>Superconducting La2CuO4+x prepared by oxygenation at high pressure: a Raman-scattering study</title> . , 1990, 1336, 77.		0
125	Deposition and analysis of Ir-Al coatings for oxidation protection of carbon materials at high temperatures. Surface and Coatings Technology, 1990, 42, 29-40.	2.2	14
126	Raman-active phonons of a twin-freeYBa2Cu3O7crystal: A complete polarization analysis. Physical Review B, 1990, 41, 8792-8797.	1.1	140

#	Article	IF	CITATIONS
127	Metallization and superconducting properties ofYBa2Cu3O6.2Bry. Physical Review B, 1990, 41, 11140-11148.	1.1	32
128	Electronic Raman scattering ofYBa2Cu3O7usingc-axis polarization: Evidence for two characteristic superconducting energies. Physical Review B, 1990, 42, 9973-9977.	1.1	49
129	Electron-phonon coupling in superconductingBa0.6K0.4BiO3: A Raman scattering study. Physical Review B, 1989, 40, 2662-2665.	1.1	49
130	Preparation and Raman analysis of single-phaseY1â	1.1	67
131	Lowâ€ŧemperature diamond growth in a microwave discharge. Applied Physics Letters, 1989, 55, 2739-2741.	1.5	31
132	In Situ Raman Spectroscopy of High Temperature Pyrite Reactions Related to Deposit Formation from Coal. Journal of the Electrochemical Society, 1989, 136, 1223-1229.	1.3	4
133	Raman analysis of TlCa2Ba2Cu3O19 and Tl2Ca2Ba2Cu3O10 crystals. Physica C: Superconductivity and Its Applications, 1989, 157, 135-143.	0.6	50
134	Observation of magnetic excitations in antiferromagnetic TlYBa2Cu2O7 by inelastic light scattering. Physica C: Superconductivity and Its Applications, 1989, 159, 603-608.	0.6	2
135	A Raman study of the systems Fe3â^'xCrxO4 and Fe2â^'xCrxO3. Journal of Solid State Chemistry, 1989, 79, 19-27.	1.4	177
136	Inelastic light scattering in α-Fe2O3: Phonon vs magnon scattering. Solid State Communications, 1988, 68, 799-802.	0.9	131
137	Raman analysis of single-crystal, lead-doped TlCaBa2Cu2O7. Physica C: Superconductivity and Its Applications, 1988, 156, 119-125.	0.6	25
138	Raman microprobe analysis of Tl-Ca-Ba-Cu-O polycrystals. Solid State Communications, 1988, 68, 77-80.	0.9	23
139	High-temperature Raman measurements of single-crystalYBa2Cu3O7â^'x. Physical Review B, 1988, 38, 2914-2917.	1.1	59
140	Raman scattering as a technique of measuring film thickness: interference effects in thin growing films. Applied Optics, 1987, 26, 4482.	2.1	12
141	Real-Time Measurements of Deposit Formation from Sodium Sulfate-Seeded Flames. Combustion Science and Technology, 1987, 54, 51-60.	1.2	6
142	Deuterodesulfurization of thiophene: An investigation of the reaction mechanism. Journal of Catalysis, 1987, 103, 261-269.	3.1	48
143	Hydrodesulfurization catalysis by Chevrel phase compounds. Journal of Catalysis, 1985, 93, 375-387.	3.1	63
144	Hydrodesulfurization by reduced molybdenum sulfides: activity and selectivity of Chevrel phase catalysts. Industrial & Engineering Chemistry Product Research and Development, 1984, 23, 519-524.	0.5	37