
Chikahide Masutani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature, 1999, 399, 700-704.	27.8	1,248
2	Xeroderma Pigmentosum Group C Protein Complex Is the Initiator of Global Genome Nucleotide Excision Repair. Molecular Cell, 1998, 2, 223-232.	9.7	796
3	A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes and Development, 2001, 15, 507-521.	5.9	378
4	Low fidelity DNA synthesis by human DNA polymerase-Ε. Nature, 2000, 404, 1011-1013.	27.8	356
5	Structure and mechanism of human DNA polymerase Ε. Nature, 2010, 465, 1044-1048.	27.8	300
6	Centrosome Protein Centrin 2/Caltractin 1 Is Part of the Xeroderma Pigmentosum Group C Complex That Initiates Global Genome Nucleotide Excision Repair. Journal of Biological Chemistry, 2001, 276, 18665-18672.	3.4	290
7	Error-prone bypass of certain DNA lesions by the human DNA polymerase $\hat{\mathbb{P}}$. Genes and Development, 2000, 14, 1589-1594.	5.9	250
8	Interaction of hREV1 with three human Y-family DNA polymerases. Genes To Cells, 2004, 9, 523-531.	1.2	244
9	Interaction of hHR23 with S5a. Journal of Biological Chemistry, 1999, 274, 28019-28025.	3.4	243
10	Preferential cis–syn thymine dimer bypass by DNA polymerase Î∙ occurs with biased fidelity. Nature, 2004, 428, 97-100.	27.8	241
11	The Xeroderma Pigmentosum Group C Protein Complex XPC-HR23B Plays an Important Role in the Recruitment of Transcription Factor IIH to Damaged DNA. Journal of Biological Chemistry, 2000, 275, 9870-9875.	3.4	240
12	Dual Roles for DNA Polymerase η in Homologous DNA Recombination and Translesion DNA Synthesis. Molecular Cell, 2005, 20, 793-799.	9.7	230
13	Centrin 2 Stimulates Nucleotide Excision Repair by Interacting with Xeroderma Pigmentosum Group C Protein. Molecular and Cellular Biology, 2005, 25, 5664-5674.	2.3	225
14	Efficient Translesion Replication Past Oxaliplatin and Cisplatin GpG Adducts by Human DNA Polymerase ηâ€. Biochemistry, 2000, 39, 4575-4580.	2.5	209
15	High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO Journal, 2004, 23, 4484-4494.	7.8	186
16	Error rate and specificity of human and murine DNA polymerase Î. Journal of Molecular Biology, 2001, 312, 335-346.	4.2	171
17	129-derived Strains of Mice Are Deficient in DNA Polymerase Î ¹ and Have Normal Immunoglobulin Hypermutation. Journal of Experimental Medicine, 2003, 198, 635-643.	8.5	169
18	Characterization of DNA Recognition by the Human UV-damaged DNA-binding Protein. Journal of Biological Chemistry, 1999, 274, 20027-20033.	3.4	165

CHIKAHIDE MASUTANI

#	Article	IF	CITATIONS
19	Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 815-820.	7.1	165
20	DNA Repair Protein XPA Binds Replication Protein A (RPA). Journal of Biological Chemistry, 1995, 270, 4152-4157.	3.4	150
21	Translesion Synthesis by Human DNA Polymerase Î∙ across Thymine Glycol Lesionsâ€. Biochemistry, 2002, 41, 6090-6099.	2.5	132
22	Different mutation signatures in DNA polymerase Â- and MSH6-deficient mice suggest separate roles in antibody diversification. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8656-8661.	7.1	115
23	Oxygen Free Radical Damage to DNA. Journal of Biological Chemistry, 2001, 276, 49283-49288.	3.4	111
24	3-Methyladenine-DNA Glycosylase (MPG Protein) Interacts with Human RAD23 Proteins. Journal of Biological Chemistry, 2000, 275, 28433-28438.	3.4	109
25	Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutation Research DNA Repair, 2001, 485, 219-227.	3.7	109
26	UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase η and Mesenchymal Tumors in Mice Deficient for DNA Polymerase ι. Molecular and Cellular Biology, 2006, 26, 7696-7706.	2.3	102
27	Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity. Molecular and Cellular Biology, 2004, 24, 2734-2746.	2.3	83
28	The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair, 2002, 1, 449-461.	2.8	82
29	Translesion DNA Synthesis Catalyzed by Human Pol Î∙ and Pol κ across 1,N 6-Ethenodeoxyadenosine. Journal of Biological Chemistry, 2001, 276, 18717-18721.	3.4	80
30	Preferential Misincorporation of Purine Nucleotides by Human DNA Polymerase η Opposite Benzo[a]pyrene 7,8-Diol 9,10-Epoxide Deoxyguanosine Adducts. Journal of Biological Chemistry, 2002, 277, 11765-11771.	3.4	80
31	Proofreading of DNA Polymerase Îdependent Replication Errors. Journal of Biological Chemistry, 2001, 276, 2317-2320.	3.4	73
32	DNA binding properties of human DNA polymerase Î: implications for fidelity and polymerase switching of translesion synthesis. Genes To Cells, 2004, 9, 1139-1150.	1.2	70
33	Erroneous incorporation of oxidized DNA precursors by Yâ€family DNA polymerases. EMBO Reports, 2003, 4, 269-273.	4.5	69
34	DNA Polymerases η and Î, Function in the Same Genetic Pathway to Generate Mutations at A/T during Somatic Hypermutation of Ig Genes*. Journal of Biological Chemistry, 2007, 282, 17387-17394.	3.4	62
35	Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene, 2000, 19, 4721-4728.	5.9	58
36	The Molecular Chaperone Hsp90 Regulates Accumulation of DNA Polymerase η at Replication Stalling Sites in UV-Irradiated Cells. Molecular Cell, 2010, 37, 79-89.	9.7	58

Chikahide Masutani

#	Article	IF	CITATIONS
37	Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. Journal of Molecular Biology, 2008, 377, 1015-1023.	4.2	57
38	A human DNA polymerase η complex containing Rad18, Rad6 and Rev1; proteomic analysis and targeting of the complex to the chromatin-bound fraction of cells undergoing replication fork arrest. Genes To Cells, 2006, 11, 731-744.	1.2	55
39	NBS1 Recruits RAD18 via a RAD6-like Domain and Regulates Pol ÎDependent Translesion DNA Synthesis. Molecular Cell, 2011, 43, 788-797.	9.7	55
40	USP7 Is a Suppressor of PCNA Ubiquitination and Oxidative-Stress-Induced Mutagenesis in Human Cells. Cell Reports, 2015, 13, 2072-2080.	6.4	55
41	Simultaneous Disruption of Two DNA Polymerases, Polĥ and Polζ, in Avian DT40 Cells Unmasks the Role of Polĥ in Cellular Response to Various DNA Lesions. PLoS Genetics, 2010, 6, e1001151.	3.5	54
42	In vitro Replication Study of Modified bases in ras Sequences Chemical and Pharmaceutical Bulletin, 1992, 40, 2792-2795.	1.3	53
43	Efficiency of Extension of Mismatched Primer Termini across from Cisplatin and Oxaliplatin Adducts by Human DNA Polymerases β and Î∙ in Vitroâ€. Biochemistry, 2003, 42, 14197-14206.	2.5	53
44	Interaction with DNA polymerase \hat{I} is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells. DNA Repair, 2009, 8, 585-599.	2.8	53
45	En bloc transfer of polyubiquitin chains to PCNA in vitro is mediated by two different human E2–E3 pairs. Nucleic Acids Research, 2012, 40, 10394-10407.	14.5	53
46	Penicilliols A and B, novel inhibitors specific to mammalian Y-family DNA polymerases. Bioorganic and Medicinal Chemistry, 2009, 17, 1811-1816.	3.0	48
47	Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases. Nucleic Acids Research, 2015, 43, 7898-7910.	14.5	47
48	An abasic site analogue activates a c-Ha-rasgene by a point mutation at modified and adjacent positions. Nucleic Acids Research, 1992, 20, 4409-4415.	14.5	46
49	Frameshifts and deletions during in vitro translesion synthesis past Pt–DNA adducts by DNA polymerases β and Î∙. DNA Repair, 2002, 1, 1003-1016.	2.8	43
50	Regulation of DNA damage tolerance in mammalian cells by post-translational modifications of PCNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 803-805, 82-88.	1.0	43
51	Mutagenic and Nonmutagenic Bypass of DNA Lesions byDrosophila DNA Polymerases dpoll̂· and dpoll̂1. Journal of Biological Chemistry, 2001, 276, 15155-15163.	3.4	35
52	Efficient and Erroneous Incorporation of Oxidized DNA Precursors by Human DNA Polymerase η. Biochemistry, 2007, 46, 5515-5522.	2.5	34
53	Molecular Chaperone Hsp90 Regulates REV1-Mediated Mutagenesis. Molecular and Cellular Biology, 2011, 31, 3396-3409.	2.3	33
54	Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic ThermophileAlvinella pompejana. Journal of Nucleic Acids, 2010, 2010, 1-13.	1.2	32

#	ARTICLE	IF	CITATIONS
55	Comparison of Incorporation and Extension of Nucleotides in vitro opposite 8-Hydroxyguanine (7,8-Dihydro-8-oxoguanine) in Hot Spots of the c-Ha-ras Gene. Japanese Journal of Cancer Research, 1995, 86, 270-276.	1.7	31
56	Reconstitution of damage DNA excision reaction from SV40 minichromosomes with purified nucleotide excision repair proteins. Mutation Research DNA Repair, 2000, 459, 147-160.	3.7	31
57	Chemical synthesis and translesion replication of a cis-syn cyclobutane thymine-uracil dimer. Nucleic Acids Research, 2004, 32, 1738-1745.	14.5	30
58	Guanine- 5-carboxylcytosine base pairs mimic mismatches during DNA replication. Scientific Reports, 2014, 4, 5220.	3.3	27
59	A Second Proliferating Cell Nuclear Antigen Loader Complex, Ctf18-Replication Factor C, Stimulates DNA Polymerase η Activity*. Journal of Biological Chemistry, 2007, 282, 20906-20914.	3.4	26
60	Critical amino acids in human DNA polymerases η and κ involved in erroneous incorporation of oxidized nucleotides. Nucleic Acids Research, 2010, 38, 859-867.	14.5	26
61	Translesion Synthesis Past Estrogen-Derived DNA Adducts by Human DNA Polymerases Î∙ and κâ€. Biochemistry, 2004, 43, 6304-6311.	2.5	25
62	Deficiency of the Caenorhabditis elegans DNA Polymerase .ETA. Homologue Increases Sensitivity to UV Radiation during Germ-line Development. Cell Structure and Function, 2006, 31, 29-37.	1.1	24
63	Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 418-442.	5.2	23
64	Cyclobutane thymine dimers in arasproto-oncogene hot spot activate the gene by point mutation. Nucleic Acids Research, 1993, 21, 2355-2361.	14.5	22
65	Modulation of TFIIH-associated kinase activity by complex formation and its relationship with CTD phosphorylation of RNA polymerase II. Genes To Cells, 2000, 5, 407-423.	1.2	22
66	Polymerization by DNA polymerase is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) cross-link: implications for cytotoxic effects in nucleotide excision repair-negative tumor cells. Carcinogenesis, 2010, 31, 388-393.	2.8	20
67	UV-induced mutations in epidermal cells of mice defective in DNA polymerase η and/or ι. DNA Repair, 2015, 29, 139-146.	2.8	19
68	8-Hydroxyguanine in a mutational hotspot of the c-Ha-ras gene causes misreplication, 'action-at-a-distance' mutagenesis and inhibition of replication. Nucleic Acids Research, 2003, 31, 6085-6095.	14.5	18
69	Error-prone Translesion Synthesis by Human DNA Polymerase Î∙ on DNA-containing Deoxyadenosine Adducts of 7,8-Dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Journal of Biological Chemistry, 2005, 280, 39684-39692.	3.4	17
70	Specificity of mutations induced by incorporation of oxidized dNTPs into DNA by human DNA polymerase Ε. DNA Repair, 2008, 7, 497-506.	2.8	16
71	Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Research, 2018, 46, 11340-11356.	14.5	16
72	Stimulation of DNA Synthesis by Mouse DNA Helicase B in a DNA Replication System Containing Eukaryotic Replication Origins. Biochemistry, 1995, 34, 7913-7922.	2.5	15

Chikahide Masutani

72Photoproduct containing DNA, Journal of Biological Chemistry, 2003, 278, 51965, 51973.8.41.074The BAH domain of BAF 180 be required for PCNA ubiquitination. Mutation Research - Fundamental and Chemistry, 2009, 294, 1480-1487.1.01.070Schemistry, 2009, 294, 1480-1487.1.01.01.071Relevance of Simultaneous Mono Ubiquitinations of Multiple Units of PCNA Homo-Trimers in DNA Damage Tolerance. PLoS DNE, 2015, 10, e0118775.1.41.072Proferential digestion of PCNA-ubiquitin and p3-subiquitin Indages by USP7 to remove polyubiquitin Johann fram duration of p3-by the E6AP-E6 ubiquitinal top 924, 4174-187.1.41.273Translectional DNA Synthesis through a C6 Quary Madeet d' annu fram duration of PCNA-ubiquitin and p3-subiquitin Indages by USP7 to remove polyubiquitin Johann fram duration strucgin a C6 Quary Madeet d' annu fram duration and DNA polymerase k and MutLi. Brochemical and Biophysical Research and Biological Chemistry, 2009, 389, 40-45.1.674Acyclobutane thyminal CNA-polymerase k and MutLi. Brochemical and Biological and synthesis. Nucleic Acids Research, 2014, 42, 2075-2084.1.675Schingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological bioremictry, 2014, 299, 2165-21672.1.676Phytopsyz-26C-deoxyadeensites 58C-Triphosphate thyminese 58C-Triphosphate thyminese 58C-Triphosphate Dispirese 38C-Triphosphate Dispirese 38C-Triphosphate Dispirese 38C-Triphosphate Dispirese 38C-Triphosphate Di	#	Article	IF	CITATIONS
Yi Molecular Machanisms of Mutagènesis, 2015, 779, 16-23. 1.0 15 75 Stepwise multipolyubiquitination of p53 by the EGAP.EG ubiquitin linkases complex. Journal of Biological 8.4 15 76 Relevance of Simultaneous Mono-Ubiquitinations of Multiple Units of PCNA Homo-Trimers in DNA 2.5 14 77 Preferential eligestion of PCNA-Ubiquitin and p53-ubiquitin linkases by USP? to remove polyubiquitin 8.4 12 78 Translesional DNA Synthesis through a C8-Quaryl Adduct of 2-Amino-1-methyl-phenylimidazo[4,5-b]pyridine (PhiP) in Vitro. Journal of Biological Chemistry, 2009, 23.4 11 79 Anovel interaction between human DNA polymerase I- and MutLis. Biochemical and Biophysical Research 2.1 10 79 Acyclobutane thymine&E'N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA 14.5 10 80 Acyclobutane thymine&E'N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA 14.5 10 81 Use of RNA in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137. 0.0 9 82 Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological 3.4 9 83 Xerodema Pigmentosum Variant, XPV; its Product and Biology, 2008, 442, 129-137. 0.0 9	73		3.4	15
13 Chemistry, 2019, 294, 14860-14875. 14 76 Relevance of Simultaneous Mono-Ubiguitinations of Multiple Units of PCNA Homo-Trimers in DNA 2.5 14 77 Preferential digestion of PCNA-ubiguitin and p53-ubiguitin linkages by USP7 to remove polyubiguitin 8.4 12 78 Zamino-Interthyle-forenyllinkazo[14,5-b]pyridine (PhiP) in Vitro. Journal of Biological Chemistry, 2009, 294, 4177-4187. 8.4 12 78 Zamino-Interthyle-forenyllinkazo[14,5-b]pyridine (PhiP) in Vitro. Journal of Biological Chemistry, 2009, 3.4 11 79 Anovel Interaction between human DNA polymerase b and Muttli+. Biochemical and Biophysical Research 2.1 10 80 Acyclobutane thymine&C'N4-methyleytosine dimer is resistant to hydrolysis but strongly blocks DNA 14.5 10 81 Use of RNA1 in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137. 0.9 9 82 Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological 3.4 9 83 Xeroderma Pigmentosum Variant, XPV: Its Product and Biological Roles. Advances in Experimental 1.6 9 84 8+tydrogy-264 - deoxydemosine 567-Tiphosphate Enhances AAT Bt' CAC Mutations Caused by 8+tyrast. Biochemica Et Biophysica Acta Cene Regulatory Mechanisms, 1998, 1397, 180-188. 8 <td< td=""><td>74</td><td>The BAH domain of BAF180 is required for PCNA ubiquitination. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 779, 16-23.</td><td>1.0</td><td>15</td></td<>	74	The BAH domain of BAF180 is required for PCNA ubiquitination. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 779, 16-23.	1.0	15
76 Damage Tolerance. PLoS ONE, 2015, 10, e0118775. 2.5 14 77 Preferential digestion of PCNA-ubiquitin and p53-ubiquitin linkages by USP7 to remove polyubiquitin 3.4 12 77 Chains from substrates. Journal of Biological Chemistry, 2019, 294, 4177-4187. 3.4 11 78 Z-Amino-I-methyl-Finhenylimidazo [4,5-b]pyridine (PhIP) in Vitro. Journal of Biological Chemistry, 2009, 284, 25585-25592. 3.4 11 79 A novel Interaction between human DNA polymerase i and MutLis. Biochemical and Biophysical Research Communications, 2009, 389, 40-45. 10 80 A cyclobutane thymineä@"N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA synthesis. Nucleic Acids Research, 2014, 42, 2075-2084. 14.5 10 81 Use of RNA in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137. 0.9 9 82 Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological Chemistry, 2014, 289, 21663-21672. 3.4 9 83 Xeroderma Pigmentosum Variant, XPV: Its Product and Biological Roles. Advances In Experimental Medicine and Biology. 2007, 46, 6639-664. 5 6 84 8+Hydroxy-28C-deoxygadenosine 53E-Triphosphate Enhances AÅT af' CÅG Mutations Caused by 8+Hydroxy-28C-deoxygadenosine 53E-Triphosphate by Suppressing its Degradation upon Replication in a Heta Extract. Biochemistry, 2007, 46, 6639-6646. <td>75</td> <td>Stepwise multipolyubiquitination of p53 by the E6AP-E6 ubiquitin ligase complex. Journal of Biological Chemistry, 2019, 294, 14860-14875.</td> <td>3.4</td> <td>15</td>	75	Stepwise multipolyubiquitination of p53 by the E6AP-E6 ubiquitin ligase complex. Journal of Biological Chemistry, 2019, 294, 14860-14875.	3.4	15
17 chains from substrates, journal of Biological Chemistry, 2019, 294, 4177-4187. 3-4 12 178 ZAmino-1-methyle-Gphenylimidazol (4,5-b]pyridine (PhiP) in Vitro. Journal of Biological Chemistry, 2009, 3.4 11 179 A novel Interaction between human DNA polymerase I and Muttl+. Biochemical and Biophysical Research Communications, 2009, 389, 40-45. 2.1 10 80 A cyclobutane thymine&CM4-methyleytosine dimer is resistant to hydrolysis but strongly blocks DNA synthesis. Nucleic Acids Research, 2014, 42, 2075-2084. 14.5 10 81 Use of RNAI in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137. 0.9 9 82 Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological Chemistry, 2014, 289, 21663-21672. 3.4 9 83 Xeroderma Pigmentosum Variant, XPV/: Its Product and Biological Roles. Advances in Experimental Medicine and Biology, 2008, 637, 93-102. 1.6 9 84 2-Hydroxy-28C-deoxyadenosine 58C-Triphosphate Enhances AÅT 41° CÅC Mutations Caused by 8+Hydroxy-28C-deoxyadenosine 58C-Triphosphate by Suppressing its Degradation upon Replication in a HeLa 2.5 8 85 Photosensitized [2 + 2] cycloaddition of N -acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine differ. Nucleic Acids Research, 2011, 39, 1165-1175. 14.5 8 86 Anew Drosophila ultraviolet light-damaged DNA	76		2.5	14
78 2-Amino-1-methyl-6-phenyllmidazo[4,5-b]pyridine (PhIP) in Vitro. Journal of Biological Chemistry, 2009, 3.4 11 79 A novel interaction between human DNA polymerase i- and MutLie. Biochemical and Biophysical Research 2.1 10 80 A cyclobutane thymineá€"N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA 14.5 10 81 Use of RNAI in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137. 0.9 9 82 Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological 8.4 9 83 Xeroderma Pigmentosum Variant, XPA: Its Product and Biological Roles. Advances in Experimental 1.6 9 84 B-Hydroxy-28E-deoxyadenosine 58C-Triphosphate Enhances AÅ: Tât' CÅC Mutations Caused by Extract. Biochemistry, 2007, 46, 6639-6646. 8 8 85 Photosensitized [2 + 2] cycloaddition of N-acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175. 14.5 8 86 A new Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 180-188. 2.4 5 87 Acetaldehyde Induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 2.8 <td>77</td> <td>Preferential digestion of PCNA-ubiquitin and p53-ubiquitin linkages by USP7 to remove polyubiquitin chains from substrates. Journal of Biological Chemistry, 2019, 294, 4177-4187.</td> <td>3.4</td> <td>12</td>	77	Preferential digestion of PCNA-ubiquitin and p53-ubiquitin linkages by USP7 to remove polyubiquitin chains from substrates. Journal of Biological Chemistry, 2019, 294, 4177-4187.	3.4	12
19 Communications, 2009, 339, 40-45. 21 10 80 A cyclobutane thymineãe "N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA synthesis. Nucleic Acids Research, 2014, 42, 2075-2084. 14.5 10 81 Use of RNAi in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137. 0.9 9 82 Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological Chemistry, 2014, 289, 21663-21672. 3.4 9 83 Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. Advances in Experimental Medicine and Biology, 2008, 637, 93-102. 1.6 9 84 2-Hydroxy-28C-deoxyadenosine 536 ⁻ Triphosphate Enhances AÅT ât' CÂ-G Mutations Caused by 8-Hydroxy-28C-deoxyadenosine 536 ⁻ Triphosphate by Suppressing Its Degradation upon Replication in a HeLa Extract. Biochemistry, 2007, 46, 6639-6464. 8 8 85 Photosenstitzed [2 + 2] cycloaddition of N-acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175. 14.5 8 86 Anew Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Cene Regulatory Mechanisms, 1998, 1397, 180-188. 2.4 5 87 Acetaldehyde Induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 2.8 4	78	2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in Vitro. Journal of Biological Chemistry, 2009,	3.4	11
30 synthesis. Nucleic Acids Research, 2014, 42, 2075-2084. 14.3 10 31 Use of RNAi in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137. 0.9 9 32 Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological 3.4 9 33 Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. Advances in Experimental 1.6 9 34 2-Hydroxy-23C-deoxyadenosine 53C-Triphosphate Enhances AAT AT CAC Mutations Caused by 8 8 84 8-Hydroxy-23C-deoxyadenosine 53C-Triphosphate Enhances AAT AT CAC Mutations Caused by 8 8 85 Photosensitized [2 + 2] cycloaddition of N -acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175. 14.5 8 86 Anew Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Cene Regulatory Mechanisms, 1998, 1397, 180-188. 2.4 5 87 Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 2.8 4 88 Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134. 4.1 3 <td>79</td> <td>A novel interaction between human DNA polymerase η and MutLα. Biochemical and Biophysical Research Communications, 2009, 389, 40-45.</td> <td>2.1</td> <td>10</td>	79	A novel interaction between human DNA polymerase η and MutLα. Biochemical and Biophysical Research Communications, 2009, 389, 40-45.	2.1	10
82Sphingosine, a Modulator of Human Translesion DNA Polymerase Activity. Journal of Biological3.4983Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. Advances in Experimental Medicine and Biology, 2008, 637, 93-102.1.69842-Hydroxy-23€C-deoxyadenosine 53€C-Triphosphate Enhances AÂ-T â†' CÂ-G Mutations Caused by 8-Hydroxy-24€'-deoxyguanosine 53€C-Triphosphate by Suppressing Its Degradation upon Replication in a HeLa Extract. Biochemistry, 2007, 46, 6639-6646.2.5885Photosensitized [2 + 2] cycloaddition of N-acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175.14.5886A new Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 180-188.2.4587Acetaldehyde Induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59.2.8488Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134.4.13	80		14.5	10
82 Chemistry, 2014, 289, 21663-21672. 3.4 9 83 Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. Advances in Experimental 1.6 9 83 Medicine and Biology, 2008, 637, 93-102. 1.6 9 84 2-Hydroxy-28C-deoxyadenosine 58C-Triphosphate Enhances AÂT ât' CÂ-G Mutations Caused by 8+Hydroxy-28C-deoxyguanosine 58C-Triphosphate by Suppressing Its Degradation upon Replication in a HeLa Extract. Biochemistry, 2007, 46, 6639-6646. 2.5 8 85 Photosensitized [2 + 2] cycloaddition of N-acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175. 14.5 8 86 A new Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 180-188. 2.4 5 87 Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 2.8 4 88 Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134. 4.1 3	81	Use of RNAi in C. elegans. Methods in Molecular Biology, 2008, 442, 129-137.	0.9	9
83 Medicine and Biology, 2008, 637, 93-102. 1.6 9 84 2-Hydroxy-2â€-deoxyadenosine 5â€-Triphosphate Enhances AÂ-T â†' CÂ-G Mutations Caused by 8-Hydroxy-2â€-deoxyguanosine 5â€-Triphosphate by Suppressing Its Degradation upon Replication in a HeLa Extract. Biochemistry, 2007, 46, 6639-6646. 2.5 8 85 Photosensitized [2 + 2] cycloaddition of N-acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175. 14.5 8 86 A new Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 180-188. 2.4 5 87 Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 2.8 4 88 Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134. 4.1 3	82		3.4	9
 84 8-Hýdroxý-2â€-deoxýguanosine 5â€-Triphosphate by Suppressing Its Degradation upon Replication in a HeLa 2.5 8 Extract. Biochemistry, 2007, 46, 6639-6646. 85 Photosensitized [2 + 2] cycloaddition of N -acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175. 86 A new Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Cene Regulatory Mechanisms, 1998, 1397, 180-188. 87 Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 88 Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134. 81 4.1 3 	83		1.6	9
85 cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175. 14.3 8 86 A new Drosophila ultraviolet light-damaged DNA recognition endonuclease that selectively nicks a (6-4) photoproduct site. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 180-188. 2.4 5 87 Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 2.8 4 88 Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134. 4.1 3	84	8-Hydroxy-2â€~-deoxyguanosine 5â€~-Triphosphate by Suppressing Its Degradation upon Replication in a HeLa	2.5	8
86 (6-4) photoproduct site. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 180-188. 2.4 5 87 Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59. 2.8 4 88 Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134. 4.1 3	85	Photosensitized [2 + 2] cycloaddition of N -acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer. Nucleic Acids Research, 2011, 39, 1165-1175.	14.5	8
 Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134. 	86		2.4	5
⁸⁸ isolated nuclear system. Biochimica Et Biophysica Acta - Mólecular Cell Research, 2002, 1592, 129-134. ^{4.1} ³	87	Acetaldehyde induces NER repairable mutagenic DNA lesions. Carcinogenesis, 2022, 43, 52-59.	2.8	4
89 Translesion DNA Synthesis and Damage Tolerance Pathways. , 2016, , 249-304. 3	88	Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 129-134.	4.1	3
	89	Translesion DNA Synthesis and Damage Tolerance Pathways. , 2016, , 249-304.		3

90 Translesion DNA Synthesis. , 2019, , 169-189.

#	Article	IF	CITATIONS
91	Human DNA Polymerase η and Its Regulatory Mechanisms. Genes and Environment, 2012, 34, 63-69.	2.1	0