Ashok Kumar Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511343/publications.pdf

Version: 2024-02-01

30 papers 688 citations

16 h-index 552781 26 g-index

30 all docs

30 docs citations

30 times ranked

584 citing authors

#	Article	IF	CITATIONS
1	Influence of Ca+Bi on tensile and strain hardening behaviour of AZ91 alloy. Materials Science and Technology, 2022, 38, 377-389.	1.6	О
2	Enhancement of Tensile Properties of AZ91–Ca–Sb Magnesium Alloy with SiC Nanoparticles Additions. Metals and Materials International, 2021, 27, 3796-3809.	3.4	9
3	Improved corrosion response of squeeze-cast AZ91 magnesium alloy with calcium and bismuth additions. Journal of Alloys and Compounds, 2021, 873, 159600.	5.5	18
4	Effect of temperature and applied load on sliding wear behaviour of AZ91D magnesium alloy. Materials Today: Proceedings, 2020, 26, 1136-1139.	1.8	3
5	An analysis of microstructure and impression creep response of squeeze-cast AZ91–xBi–ySr alloys. Materials Science and Technology, 2020, 36, 731-742.	1.6	2
6	Effect of SiC nanoparticles on the wear behaviour of squeeze-cast AZ91–2.0Ca–0.3Sb alloy. Materials Science and Technology, 2019, 35, 1678-1689.	1.6	6
7	Ratcheting life prediction of quenched–tempered 42CrMo4 steel. Journal of Materials Science, 2019, 54, 11703-11712.	3.7	12
8	Microstructure and impression creep characteristics of squeeze-cast AZ91 magnesium alloy containing Ca and/or Bi. Materials Science & Direction A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 691-703.	5.6	37
9	On the comparative assessment of ratcheting-induced dislocation density in 42CrMo4 steel by X-ray diffraction profile analysis and hardness measurement. Philosophical Magazine, 2018, 98, 2637-2656.	1.6	10
10	Damage Assessment of A356 Al Alloy Under Ratcheting–Creep Interaction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2877-2885.	2.2	5
11	Influence of additions of Sb and/or Sr on microstructure and tensile creep behaviour of squeeze-cast AZ91D Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 683, 37-45.	5.6	19
12	Correlation of Microstructure and Electrochemical Corrosion Behavior of Squeeze-Cast Ca and Sb Added AZ91 Mg Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5106-5121.	2.2	13
13	Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions. Materials Science & Science & Properties, Microstructure and Processing, 2017, 66-74.	5.6	34
14	Effect of pre-strain on ratcheting behavior of A668 Class D steel. IOP Conference Series: Materials Science and Engineering, 2016, 115, 012037.	0.6	1
15	On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel. Materials Science & Degrama (Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 660, 47-51.	5.6	21
16	Effect of Deep Cryogenic Treatment on Microstructure and Properties of AE42 Mg Alloy. Journal of Materials Engineering and Performance, 2016, 25, 3590-3598.	2.5	14
17	Impression creep behaviour of squeeze-cast Ca and Sb added AZ91 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 332-345.	5. 6	18
18	The influence of silane and silane–PMMA coatings on the in vitro biodegradation behavior of AE42 magnesium alloy for cardiovascular stent applications. RSC Advances, 2016, 6, 107344-107354.	3.6	20

#	Article	IF	CITATION
19	Dry Sliding Wear and Corrosion Behaviour of Al-Based Hybrid Composites Reinforced with Micro-Tip and Micro/Nano-Al2O3p. Transactions of the Indian Institute of Metals, 2016, 69, 1155-1167.	1.5	3
20	Corrosion behaviour of creepâ€resistant AE42 magnesium alloyâ€based hybrid composites developed for powertrain applications. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 1150-1158.	1.5	18
21	Individual and combined additions of calcium and antimony on microstructure and mechanical properties of squeeze-cast AZ91D magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 186-194.	5. 6	31
22	Correlation of microstructure and creep behaviour of MRI230D Mg alloy developed by two different casting technologies. Materials Science & Discretiance and Processing, 2015, 631, 45-51.	5.6	17
23	Interrupted creep behaviour of Mg alloys developed for powertrain applications. Materials Science & Scienc	5. 6	24
24	Impression creep behaviour of magnesium alloy-based hybrid composites in the transverse direction. Composites Science and Technology, 2009, 69, 1592-1598.	7.8	17
25	Laser surface cladding of MRI 153M magnesium alloy with (Al+Al2O3). Surface and Coatings Technology, 2009, 203, 2292-2299.	4.8	60
26	Dry sliding wear behaviour of magnesium alloy based hybrid composites in the longitudinal direction. Wear, 2009, 267, 458-466.	3.1	85
27	Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy. Surface and Coatings Technology, 2008, 202, 3187-3198.	4.8	95
28	Impression creep behaviour of magnesium alloy-based hybrid composites in the longitudinal direction. Composites Science and Technology, 2008, 68, 3251-3258.	7.8	25
29	Wear behaviour of AE42+20% saffil Mg-MMC. Tribology International, 2007, 40, 290-296.	5.9	54
30	Analysing hysteresis and residual strains in thermal cycling curves of short fibre reinforced Mg-MMCs. Composites Science and Technology, 2004, 64, 1179-1189.	7.8	17