Luke Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511165/publications.pdf Version: 2024-02-01

LIKE CARROLL

#	Article	IF	CITATIONS
1	Formation of protein cross-links by singlet oxygen-mediated disulfide oxidation. Redox Biology, 2021, 41, 101874.	9.0	20
2	Crosslinking of human plasma C-reactive protein to human serum albumin via disulfide bond oxidation. Redox Biology, 2021, 41, 101925.	9.0	10
3	Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins. Redox Biology, 2021, 38, 101822.	9.0	23
4	Oxidant-induced glutathionylation at protein disulfide bonds. Free Radical Biology and Medicine, 2020, 160, 513-525.	2.9	14
5	Interaction kinetics of selenium-containing compounds with oxidants. Free Radical Biology and Medicine, 2020, 155, 58-68.	2.9	19
6	Carnosine and Carcinine Derivatives Rapidly React with Hypochlorous Acid to Form Chloramines and Dichloramines. Chemical Research in Toxicology, 2019, 32, 513-525.	3.3	12
7	Riboflavin-induced Type 1 photo-oxidation of tryptophan using a high intensity 365†nm light emitting diode. Free Radical Biology and Medicine, 2019, 131, 133-143.	2.9	39
8	Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products. Free Radical Biology and Medicine, 2018, 118, 126-136.	2.9	34
9	Aggregation of α- and β- caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as di-tyrosine and di-tryptophan formation. Free Radical Biology and Medicine, 2018, 124, 176-188.	2.9	28
10	Catalytic oxidant scavenging by selenium-containing compounds: Reduction of selenoxides and N-chloramines by thiols and redox enzymes. Redox Biology, 2017, 12, 872-882.	9.0	29
11	Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins. Free Radical Biology and Medicine, 2017, 113, 132-142.	2.9	51
12	Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radical Biology and Medicine, 2017, 113, 395-405.	2.9	49
13	Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: Second-order rate constants and implications for biological damage. Free Radical Biology and Medicine, 2015, 84, 279-288.	2.9	22
14	Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants. Free Radical Research, 2015, 49, 750-767.	3.3	26