Hiroshi Yoshimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6511096/publications.pdf

Version: 2024-02-01

1307594 996975 21 228 7 15 citations g-index h-index papers 21 21 21 234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamics of Salivary Gland AQP5 under Normal and Pathologic Conditions. International Journal of Molecular Sciences, 2020, 21, 1182.	4.1	39
2	Enhancement of electroencephalogram activity in the theta-band range during unmatched olfactory-taste stimulation. Journal of Physiological Sciences, 2019, 69, 613-621.	2.1	6
3	Interplay between non-NMDA and NMDA receptor activation during oscillatory wave propagation: Analyses of caffeine-induced oscillations in the visual cortex of rats. Neural Networks, 2016, 79, 141-149.	5.9	3
4	Influences of multiple toothâ€loss on signal travel in the insular cortex of rats. European Journal of Oral Sciences, 2014, 122, 175-180.	1.5	0
5	Enhancement of oscillatory activity in the endopiriform nucleus of rats raised under abnormal oral conditions. Neuroscience Letters, 2014, 561, 162-165.	2.1	1
6	Age-dependent emergence of caffeine-assisted voltage oscillations in the endopiriform nucleus of rats. Neuroscience Research, 2013, 76, 16-21.	1.9	4
7	Correlation between stimulation strength and onset time of signal traveling within the neocortical neural circuits under caffeine application. Neuroscience Research, 2011, 70, 370-375.	1.9	1
8	Influences of audio-visual environments on feelings of deliciousness during having sweet foods: An electroencephalogram frequency analysis study. Nutritional Neuroscience, 2011, 14, 210-215.	3.1	7
9	Evaluations of dementia by EEG frequency analysis and psychological examination. Journal of Physiological Sciences, 2010, 60, 383-388.	2.1	3
10	Application of caffeine reveals input frequency-dependent determination of signal-traveling routes between primary and secondary visual cortices in rats. Neuroscience Research, 2010, 66, 30-36.	1.9	1
11	Multiple tooth-losses during development suppress age-dependent emergence of oscillatory neural activities in the oral somatosensory cortex. Brain Research, 2008, 1224, 37-42.	2.2	5
12	Opening of shortcut circuits between visual and retrosplenial granular cortices of rats. NeuroReport, 2007, 18, 1315-1318.	1.2	7
13	Cyclic AMP-dependent attenuation of oscillatory-activity-induced intercortical strengthening of horizontal pathways between insular and parietal cortices. Brain Research, 2006, 1069, 86-95.	2.2	0
14	Strengthening of non-NMDA receptor-dependent horizontal pathways between primary and lateral secondary visual cortices after NMDA receptor-dependent oscillatory neural activities. Brain Research, 2005, 1036, 60-69.	2.2	7
15	NMDA receptor-dependent oscillatory signal outputs from the retrosplenial cortex triggered by a non-NMDA receptor-dependent signal input from the visual cortex. Brain Research, 2005, 1045, 12-21.	2.2	13
16	Chemotopic Arrangement for Taste Quality Discrimination in the Cortical Taste Area. Chemical Senses, 2005, 30, i164-i165.	2.0	6
17	The Potential of Caffeine for Functional Modification from Cortical Synapses to Neuron Networks in the Brain. Current Neuropharmacology, 2005, 3, 309-316.	2.9	58
18	To-and-fro optical voltage signal propagation between the insular gustatory and parietal oral somatosensory areas in rat cortex slices. Brain Research, 2004, 1015, 114-121.	2.2	18

#	Article	IF	CITATIONS
19	Cortical spatial aspects of optical intrinsic signals in response to sucrose and NaCl stimuli. NeuroReport, 2004, 15, 17-20.	1.2	23
20	Age-dependent emergence of oscillatory signal flow between the primary and secondary visual cortices in rat brain slices. Brain Research, 2003, 990, 172-181.	2.2	14
21	Age-dependent appearance of an insulo-parietal cortical signal propagation that elicits a synchronized population oscillation in the parietal cortex in rats. Developmental Brain Research, 2003, 143, 245-251.	1.7	12