Gregory S Hageman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651109/publications.pdf

Version: 2024-02-01

35 papers 6,013 citations

331670 21 h-index 32 g-index

36 all docs 36 docs citations

36 times ranked 4938 citing authors

#	Article	IF	CITATIONS
1	A common haplotype in the complement regulatory gene factor H ($\langle i \rangle$ HF1/CFH $\langle i \rangle$) predisposes individuals to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7227-7232.	7.1	1,867
2	Drusen associated with aging and ageâ€related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB Journal, 2000, 14, 835-846.	0.5	833
3	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
4	Characterization of \hat{l}^2 amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Experimental Eye Research, 2004, 78, 243-256.	2.6	303
5	Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Medicine, 2012, 4, 16.	8.2	234
6	Y402H Polymorphism of Complement Factor H Affects Binding Affinity to C-Reactive Protein. Journal of Immunology, 2007, 178, 3831-3836.	0.8	220
7	Extended haplotypes in the complement factor H (<i>CFH</i>) and CFHâ€related (<i>CFH</i>) family of genes protect against ageâ€related macular degeneration: Characterization, ethnic distribution and evolutionary implications. Annals of Medicine, 2006, 38, 592-604.	3.8	217
8	Structure and composition of drusen associated with glomerulonephritis: Implications for the role of complement activation in drusen biogenesis. Eye, 2001, 15, 390-395.	2.1	214
9	Optical Coherence Tomography–Defined Changes Preceding the Development of Drusen-Associated Atrophy in Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 2415-2422.	5.2	203
10	Decreased Thickness and Integrity of the Macular Elastic Layer of Bruch's Membrane Correspond to the Distribution of Lesions Associated with Age-Related Macular Degeneration. American Journal of Pathology, 2005, 166, 241-251.	3.8	185
11	Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells. FASEB Journal, 1999, 13, 477-484.	0.5	183
12	Reticular Pseudodrusen. Ophthalmology, 2014, 121, 1252-1256.	5.2	146
13	Geographic Atrophy. JAMA Ophthalmology, 2014, 132, 338.	2.5	144
14	Extended haplotypes in the complement factor H (CFH) and CFH-related (CFHR) family of genes protect against age-related macular degeneration: characterization, ethnic distribution and evolutionary implications. Annals of Medicine, 2006, 38, 592-604.	3.8	106
15	Human Ocular Drusen Possess Novel Core Domains with a Distinct Carbohydrate Composition. Journal of Histochemistry and Cytochemistry, 1999, 47, 1533-1539.	2.5	55
16	Fundus Autofluorescence Characteristics of Nascent Geographic Atrophy in Age-Related Macular Degeneration. Investigative Ophthalmology and Visual Science, 2015, 56, 1546-1552.	3.3	55
17	Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration. , 2018, 59, AMD65.		54
18	Clinical validation of a genetic model to estimate the risk of developing choroidal neovascular age-related macular degeneration. Human Genomics, 2011, 5, 420.	2.9	49

#	Article	IF	Citations
19	Cell atlas of the human ocular anterior segment: Tissue-specific and shared cell types. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	39
20	Inclusion of Genotype with Fundus Phenotype Improves Accuracy of Predicting Choroidal Neovascularization and Geographic Atrophy. Ophthalmology, 2013, 120, 1880-1892.	5.2	38
21	Assessment of Proteins Associated With Complement Activation and Inflammation in Maculae of Human Donors Homozygous Risk at Chromosome 1 <i>CFH</i> -to- <i>F13B</i> ., 2015, 56, 4870.		35
22	Chromosome 10q26–driven age-related macular degeneration is associated with reduced levels of <i>HTRA1</i> in human retinal pigment epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
23	Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions. PLoS ONE, 2016, 11, e0166200.	2.5	23
24	Macular retinal thickness differs markedly in age-related macular degeneration driven by risk polymorphisms on chromosomes 1 and 10. Scientific Reports, 2020, 10, 21093.	3.3	22
25	Protective chromosome 1q32 haplotypes mitigate risk for age-related macular degeneration associated with the CFH-CFHR5 and ARMS2/HTRA1 loci. Human Genomics, 2021, 15, 60.	2.9	17
26	Comparison of the Morphology of the Foveal Pit Between African and Caucasian Populations. Translational Vision Science and Technology, 2020, 9, 24.	2.2	13
27	Progression of Age-Related Macular Degeneration Among Individuals Homozygous for Risk Alleles on Chromosome 1 (<i>CH-CFHR5</i>) or Chromosome 10 (<i>ARMS2/HTRA1</i>) or Both. JAMA Ophthalmology, 2022, 140, 252.	2.5	13
28	FUNDUS-WIDE SUBRETINAL AND PIGMENT EPITHELIAL ABNORMALITIES IN MACULAR TELANGIECTASIA TYPE 2. Retina, 2018, 38, S105-S113.	1.7	10
29	Hypertensive disorders of pregnancy increase the risk of developing neovascular age-related macular degeneration in later life. Hypertension in Pregnancy, 2019, 38, 141-148.	1.1	5
30	Clinical, histological and genetic findings in a donor with a clinical history of type 1 Autoimmune Polyendocrinopathy Syndrome. American Journal of Ophthalmology Case Reports, 2022, 25, 101266.	0.7	4
31	Active Rap1â€mediated inhibition of choroidal neovascularization requires interactions with IQGAP1 in choroidal endothelial cells. FASEB Journal, 2021, 35, e21642.	0.5	3
32	No Sex Differences in the Frequencies of Common Single Nucleotide Polymorphisms Associated with Age-Related Macular Degeneration. Current Eye Research, 2017, 42, 470-475.	1.5	2
33	Characterization of West African Crystalline Macular Dystrophy in the Ghanaian Population. Ophthalmology Retina, 2022, 6, 723-731.	2.4	1
34	From Genes, Proteins and Clinical Manifestation: Why Do We Need to Better Understand Age-Related Macular Degeneration?. Ophthalmology Science, 2022, , 100174.	2.5	0
35	Role of Erythropoietin Receptor Signaling in Macrophages or Choroidal Endothelial Cells in Choroidal Neovascularization. Biomedicines, 2022, 10, 1655.	3.2	0