
Yongqiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decentralized Stochastic Optimization With Inherent Privacy Protection. IEEE Transactions on Automatic Control, 2023, 68, 2293-2308.	3.6	4
2	Algorithm-Level Confidentiality for Average Consensus on Time-Varying Directed Graphs. IEEE Transactions on Network Science and Engineering, 2022, 9, 918-931.	4.1	7
3	Privacy-Preserving Collaborative Estimation for Networked Vehicles With Application to Collaborative Road Profile Estimation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 17301-17311.	4.7	4
4	Privacy-preserving dynamic average consensus via state decomposition: Case study on multi-robot formation control. Automatica, 2022, 139, 110182.	3.0	12
5	Output global oscillatory synchronisation of heterogeneous systems. International Journal of Control, 2021, 94, 1982-1993.	1.2	1
6	Decentralized Heading Control With Rate Constraints Using Pulse-Coupled Oscillators. IEEE Transactions on Control of Network Systems, 2020, 7, 1090-1102.	2.4	1
7	Localizing Spoofing Attacks on Vehicular GPS Using Vehicle-to-Vehicle Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 15656-15667.	3.9	20
8	Global Synchronization of Pulse-Coupled Oscillator Networks Under Byzantine Attacks. IEEE Transactions on Signal Processing, 2020, 68, 3158-3168.	3.2	13
9	An Attack-Resilient Pulse-Based Synchronization Strategy for General Connected Topologies. IEEE Transactions on Automatic Control, 2020, 65, 3784-3799.	3.6	13
10	ADMM Based Privacy-Preserving Decentralized Optimization. IEEE Transactions on Information Forensics and Security, 2019, 14, 565-580.	4.5	109
11	Attack-Resilient Pulse-Coupled Synchronization. IEEE Transactions on Control of Network Systems, 2019, 6, 338-351.	2.4	6
12	Experimental Study of Decentralized Robot Network Coordination. , 2019, , .		0
13	Sensor Network Event Localization via Nonconvex Nonsmooth ADMM and Augmented Lagrangian Methods. IEEE Transactions on Control of Network Systems, 2019, 6, 1473-1485.	2.4	5
14	On the global synchronization of pulse-coupled oscillators interacting on chain and directed tree graphs. Automatica, 2019, 104, 196-206.	3.0	7
15	Privacy-Preserving Average Consensus via State Decomposition. IEEE Transactions on Automatic Control, 2019, 64, 4711-4716.	3.6	111
16	Pulse-Coupled Synchronization With Guaranteed Clock Continuity. IEEE Transactions on Signal Processing, 2019, 67, 1596-1609.	3.2	3
17	Secure and Privacy-Preserving Consensus. IEEE Transactions on Automatic Control, 2019, 64, 4035-4049.	3.6	147
18	Enabling Privacy-Preservation in Decentralized Optimization. IEEE Transactions on Control of Network Systems, 2019, 6, 679-689.	2.4	52

YONGQIANG WANG

#	Article	IF	CITATIONS
19	Second-order sliding-mode differentiators: an experimental comparative analysis using Van der Pol oscillator. International Journal of Control, 2018, 91, 2100-2112.	1.2	15
20	Distributed Estimation of Power System Oscillation Modes Under Attacks on GPS Clocks. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 1626-1637.	2.4	30
21	Distributed Event Localization via Alternating Direction Method of Multipliers. IEEE Transactions on Mobile Computing, 2018, 17, 348-361.	3.9	16
22	Analysis of Dead Reckoning Accuracy in Swarm Robotics System. , 2018, , .		0
23	A Pulse-Based Integrated Communication and Control Design for Decentralized Collective Motion Coordination. IEEE Transactions on Automatic Control, 2018, 63, 1858-1864.	3.6	12
24	Pulse-Coupled Oscillators Resilient to Stealthy Attacks. IEEE Transactions on Signal Processing, 2018, 66, 3086-3099.	3.2	11
25	Robust Output Tracking Control for Van der Pol Oscillator: A Sliding-Mode Differentiator Approach. , 2018, , .		2
26	Pulse-coupled time synchronization for distributed acoustic event detection using wireless sensor networks. Control Engineering Practice, 2017, 60, 106-117.	3.2	21
27	Robust Almost Global Splay State Stabilization of Pulse Coupled Oscillators. IEEE Transactions on Automatic Control, 2017, 62, 3083-3090.	3.6	14
28	Phase Desynchronization: A New Approach and Theory Using Pulse-Based Interaction. IEEE Transactions on Signal Processing, 2017, 65, 1160-1171.	3.2	8
29	Undergraduate creative inquiry of swarm robotics: Communication methods. , 2017, , .		0
30	Secure and Privacy-Preserving Average Consensus. , 2017, , .		35
31	On Phase Response Function Based Decentralized Phase Desynchronization. IEEE Transactions on Signal Processing, 2017, 65, 5564-5577.	3.2	8
32	A distributed computation scheme for real-time control and estimation of PDEs. , 2016, , .		0
33	A unified communication and control approach for decentralized heading alignment in robot networks. , 2016, , .		0
34	Distributed monitoring of wide-area oscillations in the presence of GPS spoofing attacks. , 2016, , .		2
35	An undergraduate research platform for cooperative control and swarm robotics. , 2016, , .		5
36	Synchronization of pulse-coupled oscillators to a global pacemaker. Systems and Control Letters, 2016, 88, 75-80.	1.3	25

YONGQIANG WANG

#	Article	IF	CITATIONS
37	Synchronization of Pulse-Coupled Oscillators on (Strongly) Connected Graphs. IEEE Transactions on Automatic Control, 2015, 60, 1710-1715.	3.6	31
38	Global synchronization of pulse-coupled oscillators interacting on cycle graphs. Automatica, 2015, 52, 202-209.	3.0	26
39	Intercellular Delay Regulates the Collective Period of Repressively Coupled Gene Regulatory Oscillator Networks. IEEE Transactions on Automatic Control, 2014, 59, 211-216.	3.6	13
40	Increasing Sync Rate of Pulse-Coupled Oscillators via Phase Response Function Design: Theory and Application to Wireless Networks. IEEE Transactions on Control Systems Technology, 2013, 21, 1455-1462.	3.2	27
41	Statistical Analysis of the Pulse-Coupled Synchronization Strategy for Wireless Sensor Networks. IEEE Transactions on Signal Processing, 2013, 61, 5193-5204.	3.2	18
42	Bio-inspired hybrid control of pulse-coupled oscillators and application to synchronization of a wireless network. , 2012, , .		7
43	Energy-Efficient Pulse-Coupled Synchronization Strategy Design for Wireless Sensor Networks Through Reduced Idle Listening. IEEE Transactions on Signal Processing, 2012, 60, 5293-5306.	3.2	83
44	Optimal Phase Response Functions for Fast Pulse-Coupled Synchronization in Wireless Sensor Networks. IEEE Transactions on Signal Processing, 2012, 60, 5583-5588.	3.2	47
45	On influences of global and local cues on the rate of synchronization of oscillator networks. Automatica, 2011, 47, 1236-1242.	3.0	20
46	The synchronization rate of oscillator networks subject to delayed and directed interaction. , 2010, , .		1
47	The influences of global and local cues on the synchronization rate of interconnected oscillator networks subject to time delays. , 2010, , .		1