Damian C Genetos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oscillating fluid flow activation of gap junction hemichannels induces atp release from MLO-Y4 osteocytes. Journal of Cellular Physiology, 2007, 212, 207-214.	4.1	273
2	Fluid Shear-Induced ATP Secretion Mediates Prostaglandin Release in MC3T3-E1 Osteoblasts. Journal of Bone and Mineral Research, 2005, 20, 41-49.	2.8	236
3	Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials, 2012, 33, 128-136.	11.4	203
4	MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. American Journal of Physiology - Cell Physiology, 2006, 290, C776-C784.	4.6	167
5	Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca2+- and ATP-dependent in MC3T3-E1 osteoblasts. Bone, 2008, 42, 644-652.	2.9	152
6	Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. American Journal of Veterinary Research, 2010, 71, 1237-1245.	0.6	147
7	Targeted deletion of <i>Sost</i> distal enhancer increases bone formation and bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14092-14097.	7.1	118
8	Differentiation-Dependent Secretion of Proangiogenic Factors by Mesenchymal Stem Cells. PLoS ONE, 2012, 7, e35579.	2.5	108
9	Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. Journal of Cellular Biochemistry, 2010, 110, 457-467.	2.6	106
10	Measurement of oxygen tension within mesenchymal stem cell spheroids. Journal of the Royal Society Interface, 2017, 14, 20160851.	3.4	95
11	Fluid shear-induced NFκB translocation in osteoblasts is mediated by intracellular calcium release. Bone, 2003, 33, 399-410.	2.9	83
12	Nanocomposite Scaffold for Chondrocyte Growth and Cartilage Tissue Engineering: Effects of Carbon Nanotube Surface Functionalization. Tissue Engineering - Part A, 2014, 20, 2305-2315.	3.1	77
13	Hypoxic regulation of mesenchymal stem cell migration: the role of RhoA and HIFâ€lα. Cell Biology International, 2011, 35, 981-989.	3.0	72
14	Osteogenesis and Trophic Factor Secretion are Influenced by the Composition of Hydroxyapatite/Poly(Lactide-Co-Glycolide) Composite Scaffolds. Tissue Engineering - Part A, 2010, 16, 127-137.	3.1	71
15	Longâ€ŧerm administration of AMD3100, an antagonist of SDFâ€1/CXCR4 signaling, alters fracture repair. Journal of Orthopaedic Research, 2012, 30, 1853-1859.	2.3	65
16	Modulation of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells. Biorheology, 2009, 46, 389-399.	0.4	61
17	Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway. Biochemical and Biophysical Research Communications, 2008, 366, 1061-1066.	2.1	59
18	Prostaglandin E2 Signals Through PTGER2 to Regulate Sclerostin Expression. PLoS ONE, 2011, 6, e17772.	2.5	59

DAMIAN C GENETOS

#	Article	IF	CITATIONS
19	Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice. Arthritis Research and Therapy, 2015, 17, 30.	3.5	58
20	TGF-β regulates sclerostin expression via the ECR5 enhancer. Bone, 2012, 50, 663-669.	2.9	56
21	Hypoxia Signaling in the Skeleton: Implications for Bone Health. Current Osteoporosis Reports, 2019, 17, 26-35.	3.6	56
22	Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures. Journal of Cellular Biochemistry, 2010, 110, 87-96.	2.6	50
23	The Role of Nerves in Skeletal Development, Adaptation, and Aging. Frontiers in Endocrinology, 2020, 11, 646.	3.5	49
24	Joint diseases: from connexins to gap junctions. Nature Reviews Rheumatology, 2018, 14, 42-51.	8.0	48
25	Genetic evidence that SOST inhibits WNT signaling in the limb. Developmental Biology, 2010, 342, 169-179.	2.0	44
26	Annexin V disruption impairs mechanically induced calcium signaling in osteoblastic cells. Bone, 2004, 35, 656-663.	2.9	41
27	Hypoxia increases Annexin A2 expression in osteoblastic cells via VEGF and ERK. Bone, 2010, 47, 1013-1019.	2.9	41
28	Osteogenic preconditioning in perfusion bioreactors improves vascularization and bone formation by human bone marrow aspirates. Science Advances, 2020, 6, eaay2387.	10.3	35
29	Ageâ€related changes in gap junctional intercellular communication in osteoblastic cells. Journal of Orthopaedic Research, 2012, 30, 1979-1984.	2.3	34
30	Osteogenic response to BMPâ€2 of hMSCs grown on apatiteâ€coated scaffolds. Biotechnology and Bioengineering, 2011, 108, 2727-2735.	3.3	33
31	Lysophosphatidic Acid Protects Human Mesenchymal Stromal Cells from Differentiation-Dependent Vulnerability to Apoptosis. Tissue Engineering - Part A, 2014, 20, 1156-1164.	3.1	33
32	Regulation of tenascin expression in bone. Journal of Cellular Biochemistry, 2011, 112, 3354-3363.	2.6	32
33	Impaired Osteoblast Differentiation in Annexin A2- and -A5-Deficient Cells. PLoS ONE, 2014, 9, e107482.	2.5	32
34	Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects. Bone, 2018, 116, 307-314.	2.9	32
35	Hypoxia regulates PGE2 release and EP1 receptor expression in osteoblastic cells. Journal of Cellular Physiology, 2007, 212, 182-188.	4.1	30
36	The Effect of Oxygen Tension on the Long-Term Osteogenic Differentiation and MMP/TIMP Expression of Human Mesenchymal Stem Cells. Cells Tissues Organs, 2010, 191, 175-184.	2.3	30

DAMIAN C GENETOS

#	Article	IF	CITATIONS
37	Bone adaptation to mechanical loading in a mouse model of reduced peripheral sensory nerve function. PLoS ONE, 2017, 12, e0187354.	2.5	26
38	Fluid Shear-Induced ATP Secretion Mediates Prostaglandin Release in MC3T3-E1 Osteoblasts. Journal of Bone and Mineral Research, 2005, 20, 41-49.	2.8	24
39	Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF. Journal of Molecular Neuroscience, 2010, 40, 360-366.	2.3	23
40	Genomic approaches in breast cancer research. Briefings in Functional Genomics, 2013, 12, 391-396.	2.7	23
41	Purinergic signaling is required for fluid shear stress-induced NF-κB translocation in osteoblasts. Experimental Cell Research, 2011, 317, 737-744.	2.6	21
42	Betacellulin inhibits osteogenic differentiation and stimulates proliferation through HIF-1α. Cell and Tissue Research, 2010, 340, 81-89.	2.9	19
43	Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation. Bone, 2016, 92, 180-188.	2.9	18
44	HIFâ€1α regulates hypoxiaâ€induced EP1 expression in osteoblastic cells. Journal of Cellular Biochemistry, 2009, 107, 233-239.	2.6	16
45	DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of anti-inflammatory genes in MC3T3-E1 cells. Bone, 2007, 41, 833-841.	2.9	15
46	Prostaglandin expression profile in hypoxic osteoblastic cells. Journal of Bone and Mineral Metabolism, 2010, 28, 8-16.	2.7	14
47	Neutrophils exposed to <i>A. phagocytophilum</i> under shear stress fail to fully activate, polarize, and transmigrate across inflamed endothelium. American Journal of Physiology - Cell Physiology, 2010, 299, C87-C96.	4.6	14
48	Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds. Journal of Functional Biomaterials, 2012, 3, 382-397.	4.4	12
49	Parathyroid hormone regulation of hypoxia-inducible factor signaling in osteoblastic cells. Bone, 2015, 81, 97-103.	2.9	7
50	Improving Bone Health by Optimizing the Anabolic Action of <scp>Wnt</scp> Inhibitor Multitargeting. JBMR Plus, 2021, 5, e10462.	2.7	7
51	Sexually Dimorphic Influence of Neonatal Antibiotics on Bone. Journal of Orthopaedic Research, 2019, 37, 2122-2129.	2.3	3
52	Src is sufficient, but not necessary, for osteopontin induction in osteoblasts. Biorheology, 2011, 48, 65-74.	0.4	2
53	Intercellular communication and mechanotransduction in bone. Current Opinion in Orthopaedics, 2005, 16, 311-315.	0.3	1
54	Bone Cell Mechanoresponsiveness. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2012, , 177-190.	1.0	0

IF

CITATIONS