## Shelley A Claridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510522/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cow-to-cow variation in nanocrystal synthesis: learning from technical-grade oleylamine.<br>Nanotechnology, 2022, 33, 082501.                                                             | 2.6  | 2         |
| 2  | Nanometer-Scale Precision Polymer Patterning of PDMS: Multiscale Insights into Patterning Efficiency<br>Using Alkyldiynamines. ACS Applied Materials & Interfaces, 2022, 14, 22634-22642. | 8.0  | 5         |
| 3  | Trans and Saturated Alkyl Impurities in Technical-Grade Oleylamine: Limited Miscibility and Impacts on Nanocrystal Growth. Chemistry of Materials, 2022, 34, 5273-5282.                   | 6.7  | 7         |
| 4  | Oleylamine Impurities Regulate Temperature-Dependent Hierarchical Assembly of Ultranarrow Gold<br>Nanowires on Biotemplated Interfaces. ACS Nano, 2021, 15, 10275-10285.                  | 14.6 | 16        |
| 5  | Striped Poly(diacetylene) Monolayers Control Adsorption of Polyelectrolytes and Proteins on 2D<br>Materials and Elastomers. ACS Applied Nano Materials, 2021, 4, 7037-7046.               | 5.0  | 11        |
| 6  | Plenty of Room at the Top: A Multi‣cale Understanding of nmâ€Resolution Polymer Patterning on 2D<br>Materials. Angewandte Chemie, 2021, 133, 25640-25648.                                 | 2.0  | 1         |
| 7  | Lipids: An Atomic Toolkit for the Endless Frontier. ACS Nano, 2021, 15, 15429-15445.                                                                                                      | 14.6 | 11        |
| 8  | Plenty of Room at the Top: A Multi‣cale Understanding of nmâ€Resolution Polymer Patterning on 2D<br>Materials. Angewandte Chemie - International Edition, 2021, 60, 25436-25444.          | 13.8 | 10        |
| 9  | One Nanometer Wide Functional Patterns with a Sub-10 Nanometer Pitch Transferred to an Amorphous Elastomeric Material. ACS Nano, 2021, 15, 1426-1435.                                     | 14.6 | 16        |
| 10 | Biomolecular templates for interfacial nanomaterial assembly. , 2021, , .                                                                                                                 |      | 0         |
| 11 | Large-Scale Noncovalent Functionalization of 2D Materials through Thermally Controlled Rotary<br>Langmuir–Schaefer Conversion. Langmuir, 2020, 36, 10577-10586.                           | 3.5  | 12        |
| 12 | Displaceable Templates with Sub-10 nm Periodicity Activate and Direct Epitaxial Assembly of Complex<br>Aromatic Molecules. Chemistry of Materials, 2020, 32, 2552-2560.                   | 6.7  | 5         |
| 13 | 1-nm-Wide Hydrated Dipole Arrays Regulate AuNW Assembly on Striped Monolayers in Nonpolar<br>Solvent. CheM, 2019, 5, 2264-2275.                                                           | 11.7 | 19        |
| 14 | Hierarchically patterned striped phases of polymerized lipids: toward controlled carbohydrate presentation at interfaces. Faraday Discussions, 2019, 219, 229-243.                        | 3.2  | 15        |
| 15 | New directions in surface functionalization and characterization: general discussion. Faraday Discussions, 2019, 219, 252-261.                                                            | 3.2  | 0         |
| 16 | Hierarchically Patterned Noncovalent Functionalization of 2D Materials by Controlled<br>Langmuir–Schaefer Conversion. Langmuir, 2018, 34, 1353-1362.                                      | 3.5  | 25        |
| 17 | Spectroscopic Metrics for Alkyl Chain Ordering in Lying-Down Noncovalent Monolayers of Diynoic Acids on Graphene. Chemistry of Materials, 2018, 30, 2506-2514.                            | 6.7  | 9         |
| 18 | Edge-on adsorption of multi-chain functional alkanes stabilizes noncovalent monolayers on                                                                                                 | 4.1  | 13        |

SHELLEY A CLARIDGE

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Standing, lying, and sitting: translating building principles of the cell membrane to synthetic 2D material interfaces. Chemical Communications, 2018, 54, 6681-6691.                                                                    | 4.1  | 13        |
| 20 | Spatially Controlled Noncovalent Functionalization of 2D Materials Based on Molecular<br>Architecture. Langmuir, 2018, 34, 5454-5463.                                                                                                    | 3.5  | 18        |
| 21 | Sitting Phase Monolayers of Polymerizable Phospholipids Create Dimensional, Molecular-Scale<br>Wetting Control for Scalable Solution-Based Patterning of Layered Materials. ACS Applied Materials<br>& Interfaces, 2017, 9, 19326-19334. | 8.0  | 18        |
| 22 | Multimicrometer Noncovalent Monolayer Domains on Layered Materials through Thermally<br>Controlled Langmuir–Schaefer Conversion for Noncovalent 2D Functionalization. ACS Applied<br>Materials & Interfaces, 2017, 9, 36409-36416.       | 8.0  | 20        |
| 23 | Modulating Wettability of Layered Materials by Controlling Ligand Polar Headgroup Dynamics.<br>Journal of the American Chemical Society, 2017, 139, 11973-11979.                                                                         | 13.7 | 22        |
| 24 | Copper Ion Binding Site in β-Amyloid Peptide. Nano Letters, 2016, 16, 6282-6289.                                                                                                                                                         | 9.1  | 43        |
| 25 | Peptide interfaces with graphene: an emerging intersection of analytical chemistry, theory, and materials. Analytical and Bioanalytical Chemistry, 2016, 408, 2649-2658.                                                                 | 3.7  | 25        |
| 26 | Sitting Phases of Polymerizable Amphiphiles for Controlled Functionalization of Layered Materials.<br>Journal of the American Chemical Society, 2016, 138, 4448-4457.                                                                    | 13.7 | 41        |
| 27 | Multimodal scanning probe imaging: nanoscale chemical analysis from biology to renewable energy.<br>Analytical Methods, 2015, 7, 7106-7127.                                                                                              | 2.7  | 18        |
| 28 | Defect-Tolerant Aligned Dipoles within Two-Dimensional Plastic Lattices. ACS Nano, 2015, 9, 4734-4742.                                                                                                                                   | 14.6 | 30        |
| 29 | Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy. Journal of the American Chemical Society, 2013, 135, 18528-18535.                                                       | 13.7 | 33        |
| 30 | Molecular Switches and Motors on Surfaces. Annual Review of Physical Chemistry, 2013, 64, 605-630.                                                                                                                                       | 10.8 | 119       |
| 31 | From the bottom up: dimensional control and characterization in molecular monolayers. Chemical Society Reviews, 2013, 42, 2725-2745.                                                                                                     | 38.1 | 153       |
| 32 | DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17308-17313.                          | 7.1  | 53        |
| 33 | Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology.<br>ACS Nano, 2011, 5, 693-729.                                                                                                         | 14.6 | 95        |
| 34 | Cage molecules for self-assembly. Materials Science and Engineering Reports, 2010, 70, 188-208.                                                                                                                                          | 31.8 | 66        |
| 35 | Hybrid strategies in nanolithography. Reports on Progress in Physics, 2010, 73, 036501.                                                                                                                                                  | 20.1 | 150       |
| 36 | Polarizabilities of Adsorbed and Assembled Molecules: Measuring the Conductance through Buried Contacts. ACS Nano, 2010, 4, 7630-7636.                                                                                                   | 14.6 | 36        |

SHELLEY A CLARIDGE

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds. Journal of the<br>American Chemical Society, 2009, 131, 8455-8459.                           | 13.7 | 473       |
| 38 | Identifying Reactive Intermediates in the Ullmann Coupling Reaction by Scanning Tunneling Microscopy and Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 13167-13172. | 2.5  | 61        |
| 39 | Nanocrystal Diffusion in a Liquid Thin Film Observed by in Situ Transmission Electron Microscopy.<br>Nano Letters, 2009, 9, 2460-2465.                                          | 9.1  | 282       |
| 40 | Cluster-Assembled Materials. ACS Nano, 2009, 3, 244-255.                                                                                                                        | 14.6 | 598       |
| 41 | Enzymatic Ligation Creates Discrete Multinanoparticle Building Blocks for Self-Assembly. Journal of the American Chemical Society, 2008, 130, 9598-9605.                        | 13.7 | 90        |
| 42 | Isolation of Discrete Nanoparticleâ^'DNA Conjugates for Plasmonic Applications. Nano Letters, 2008, 8,<br>1202-1206.                                                            | 9.1  | 159       |
| 43 | Protein-Nanocrystal Conjugates Support a Single Filament Polymerization Model in R1 Plasmid Segregation. Journal of Biological Chemistry, 2008, 283, 28081-28086.               | 3.4  | 15        |
| 44 | Directed Assembly of Discrete Gold Nanoparticle Groupings Using Branched DNA Scaffolds. Chemistry of Materials, 2005, 17, 1628-1635.                                            | 6.7  | 142       |