Benedetta Franzelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510472/publications.pdf

Version: 2024-02-01

24 papers 1,010 citations

623188 14 h-index 713013 21 g-index

24 all docs

24 docs citations

times ranked

24

668 citing authors

#	Article	IF	CITATIONS
1	Importance of mass and enthalpy conservation in the modelling of titania nanoparticles flame synthesis. Combustion Theory and Modelling, 2021, 25, 389-412.	1.0	2
2	Using In Situ Measurements to Experimentally Characterize TiO2 Nanoparticle Synthesis in a Turbulent Isopropyl Alcohol Flame. Materials, 2021, 14, 7083.	1.3	2
3	A forward approach for the validation of soot sizingÂmodels using laser-induced incandescence (LII). Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	3
4	Experimental investigation of soot production in a confined swirled flame operating under perfectly premixed rich conditions. Proceedings of the Combustion Institute, 2019, 37, 893-901.	2.4	13
5	A three-equation model for the prediction of soot emissions in LES of gas turbines. Proceedings of the Combustion Institute, 2019, 37, 5411-5419.	2.4	25
6	Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency. Proceedings of the Combustion Institute, 2019, 37, 1355-1363.	2.4	18
7	Analysis of radiative transfer in a turbulent sooting jet flame using a Monte Carlo method coupled to large eddy simulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235, 187-203.	1.1	15
8	A post processing technique to predict primary particle size of sooting flames based on a chemical discrete sectional model: Application to diluted coflow flames. Combustion and Flame, 2019, 208, 122-138.	2.8	11
9	Coupling an LES approach and a soot sectional model for the study of sooting turbulent non-premixed flames. Combustion and Flame, 2018, 190, 477-499.	2.8	65
10	A New Experimental Database for the Investigation of Soot in a Model Scale Swirled Combustor Under Perfectly Premixed Rich Conditions. , 2018 , , .		0
11	Numerical investigation of soot-flame-vortex interaction. Proceedings of the Combustion Institute, 2017, 36, 753-761.	2.4	10
12	Unsteady dynamics of PAH and soot particles in laminar counterflow diffusion flames. Proceedings of the Combustion Institute, 2017, 36, 927-934.	2.4	23
13	Large Eddy Simulation of Swirled Spray Flame Using Detailed and Tabulated Chemical Descriptions. Flow, Turbulence and Combustion, 2017, 98, 633-661.	1.4	27
14	Characterizing spray flame–vortex interaction: A spray spectral diagram for extinction. Combustion and Flame, 2016, 163, 100-114.	2.8	9
15	Numerical Modeling of Soot Production in Aero-Engine Combustors Using Large Eddy Simulations. , 2015, , .		10
16	On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames. Combustion Theory and Modelling, 2015, 19, 773-806.	1.0	28
17	Analysis of segregation and bifurcation in turbulent spray flames: A 3D counterflow configuration. Proceedings of the Combustion Institute, 2015, 35, 1675-1683.	2.4	57
18	Time-resolved spatial patterns and interactions of soot, PAH and OH in a turbulent diffusion flame. Proceedings of the Combustion Institute, 2015, 35, 1921-1929.	2.4	28

#	Article	IF	CITATION
19	A tabulated chemistry method for spray combustion. Proceedings of the Combustion Institute, 2013, 34, 1659-1666.	2.4	90
20	Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame. Comptes Rendus - Mecanique, 2013, 341, 247-256.	2.1	32
21	Large Eddy Simulation of Swirling Kerosene/Air Spray Flame Using Tabulated Chemistry. , 2013, , .		3
22	Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame. Combustion and Flame, 2012, 159, 621-637.	2.8	274
23	A two-step chemical scheme for kerosene–air premixed flames. Combustion and Flame, 2010, 157, 1364-1373.	2.8	246
24	A moment method for low speed microflows. Continuum Mechanics and Thermodynamics, 2009, 21, 495-509.	1.4	19