Nelson J O'driscoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510401/publications.pdf

Version: 2024-02-01

201385 233125 2,481 79 27 45 citations g-index h-index papers 90 90 90 2303 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methylmercury in caddisflies and mayflies: Influences of water and sediment chemistry. Chemosphere, 2022, 286, 131785.	4.2	2
2	Kejimkujik calibrated catchments: A benchmark dataset for longâ€ŧerm impacts of terrestrial and freshwater acidification. Hydrological Processes, 2022, 36, .	1.1	O
3	Temporal Changes in Photoreducible Mercury, Photoreduction Rates, and the Role of Dissolved Organic Matter in Freshwater Lakes. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 635-640.	1.3	4
4	Are There Longitudinal Effects of Forest Harvesting on Carbon Quality and Flow and Methylmercury Bioaccumulation in Primary Consumers of Temperate Stream Networks?. Environmental Toxicology and Chemistry, 2022, , .	2.2	2
5	Scavenging gulls are biovectors of mercury from industrial wastes in Nova Scotia, Canada. Chemosphere, 2022, 304, 135279.	4.2	3
6	Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. Chemosphere, 2021, 262, 128360.	4.2	27
7	Marine pollution in fledged Leach's storm-petrels (Hydrobates leucorhous) from Baccalieu Island, Newfoundland and Labrador, Canada. Marine Pollution Bulletin, 2021, 162, 111842.	2.3	11
8	A Review of Freshwater Invertebrates as Biomonitors of Methylmercury: the Importance of More Complete Physical and Chemical Reporting. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 801-808.	1.3	6
9	Total mercury, methylmercury, phosphate, and sulfate inputs to a bog ecosystem from herring gull (Larus smithsoniansus) guano. Ecotoxicology and Environmental Safety, 2021, 226, 112845.	2.9	6
10	Historical patterns in mercury exposure for North American songbirds. Ecotoxicology, 2020, 29, 1161-1173.	1.1	11
11	Spatial distribution of mercury and other potentially toxic elements using epiphytic lichens in Nova Scotia. Chemosphere, 2020, 241, 125064.	4.2	18
12	Relationships between Potentially Toxic Elements in intertidal sediments and their bioaccumulation by benthic invertebrates. PLoS ONE, 2019, 14, e0216767.	1.1	19
13	Editorial For "Wetlands in a changing World― Science of the Total Environment, 2019, 693, 133562.	3.9	О
14	Tissue content of thiol-containing amino acids predicts methylmercury in aquatic invertebrates. Science of the Total Environment, 2019, 688, 567-573.	3.9	12
15	Dissolved Gaseous Mercury Production at a Marine Aquaculture Site in the Mercury-Contaminated Marano and Grado Lagoon, Italy. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 218-224.	1.3	5
16	Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary. Journal of Environmental Sciences, 2018, 68, 41-54.	3.2	19
17	Mercury concentrations in blood, brain and muscle tissues of coastal and pelagic birds from northeastern Canada. Ecotoxicology and Environmental Safety, 2018, 157, 424-430.	2.9	23
18	Increasing chloride concentration causes retention of mercury in melted Arctic snow due to changes in photoreduction kinetics. Journal of Environmental Sciences, 2018, 68, 122-129.	3.2	10

#	Article	IF	Citations
19	Mercury photoreduction and photooxidation in lakes: Effects of filtration and dissolved organic carbon concentration. Journal of Environmental Sciences, 2018, 68, 151-159.	3.2	21
20	Methylmercury in tissues of Atlantic sturgeon (Acipenser oxyrhynchus) from the Saint John River, New Brunswick, Canada. Marine Pollution Bulletin, 2018, 126, 250-254.	2.3	12
21	Assessing the utility of dissolved organic matter photoreactivity as a predictor of in situ methylmercury concentration. Journal of Environmental Sciences, 2018, 68, 160-168.	3.2	7
22	Methylmercury photodemethylation is inhibited in lakes with high dissolved organic matter. Environmental Pollution, 2018, 232, 392-401.	3.7	28
23	Methylmercury Biogeochemistry in Freshwater Ecosystems: A Review Focusing on DOM and Photodemethylation. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 14-25.	1.3	53
24	The influence of avian biovectors on mercury speciation in a bog ecosystem. Science of the Total Environment, 2018, 637-638, 264-273.	3.9	12
25	JES Special issue in Mercury Biogeochemistry and Fate. Journal of Environmental Sciences, 2018, 68, 1-4.	3.2	6
26	Salt-marsh plants as potential sources of HgO into the atmosphere. Atmospheric Environment, 2017, 152, 458-464.	1.9	20
27	Gaseous mercury flux from salt marshes is mediated by solar radiation and temperature. Atmospheric Environment, 2017, 153, 117-125.	1.9	20
28	Relationships between blood mercury levels, reproduction, and return rate in a small seabird. Ecotoxicology, 2017, 26, 97-103.	1.1	30
29	Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments. Science of the Total Environment, 2017, 603-604, 279-289.	3.9	18
30	Response of oxidative stress transcripts in the brain of wild yellow perch (Perca flavescens) exposed to an environmental gradient of methylmercury. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 192, 50-58.	1.3	10
31	Oxidative stress profiles in brain point out a higher susceptibility of fish to waterborne divalent mercury compared to dietary organic mercury. Marine Pollution Bulletin, 2017, 122, 110-121.	2.3	20
32	Quantifying the effects of photoreactive dissolved organic matter on methylmercury photodemethylation rates in freshwaters. Environmental Toxicology and Chemistry, 2017, 36, 1493-1502.	2.2	13
33	Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs. Environmental Toxicology and Chemistry, 2017, 36, 661-670.	2.2	13
34	A Comparison of Mercury Biomagnification through Lacustrine Food Webs Supporting Brook Trout (Salvelinus fontinalis) and Other Salmonid Fishes. Frontiers in Environmental Science, 2016, 4, .	1.5	14
35	Seasonal variation of methylmercury in sediment cores from the Tagus Estuary (Portugal). Marine Pollution Bulletin, 2016, 104, 162-170.	2.3	21
36	Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment. Aquatic Toxicology, 2016, 180, 320-333.	1.9	21

#	Article	IF	CITATIONS
37	Effects of coastal managed retreat on mercury biogeochemistry. Environmental Pollution, 2016, 209, 99-106.	3.7	2
38	Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicology and Environmental Safety, 2016, 124, 60-67.	2.9	31
39	Effects of inâ€channel beaver impoundments on mercury bioaccumulation in Rocky Mountain stream food webs. Ecosphere, 2015, 6, 1-17.	1.0	16
40	Mercury in Arctic snow: Quantifying the kinetics of photochemical oxidation and reduction. Science of the Total Environment, 2015, 509-510, 115-132.	3.9	17
41	Mercury concentrations in feathers of marine birds in Arctic Canada. Marine Pollution Bulletin, 2015, 98, 308-313.	2.3	30
42	Photoreducible Mercury Loss from Arctic Snow Is Influenced by Temperature and Snow Age. Environmental Science & Environmental	4.6	15
43	Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. Science of the Total Environment, 2015, 509-510, 195-205.	3.9	49
44	Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem. Science of the Total Environment, 2015, 509-510, 206-215.	3.9	45
45	Mercury in the marine environment of the Canadian Arctic: Review of recent findings. Science of the Total Environment, 2015, 509-510, 67-90.	3.9	106
46	Mercury photochemistry in snow and implications for Arctic ecosystems. Environmental Reviews, 2014, 22, 331-345.	2.1	21
47	Mercury in bats from the northeastern United States. Ecotoxicology, 2014, 23, 45-55.	1.1	56
48	Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils. Environmental Pollution, 2014, 193, 138-146.	3.7	51
49	Response to Comment on "Mercury Biomagnification through Food Webs Is Affected by Physical and Chemical Characteristics of Lakes― Environmental Science & Environmental S	4.6	3
50	Mercury bioaccumulation in dragonflies (Odonata: Anisoptera): Examination of life stages and body regions. Environmental Toxicology and Chemistry, 2014, 33, 2047-2054.	2.2	29
51	Mercury Biomagnification through Food Webs Is Affected by Physical and Chemical Characteristics of Lakes. Environmental Science & Environmental Scienc	4.6	134
52	Mercury and methylmercury bioaccumulation by polychaete worms is governed by both feeding ecology and mercury bioavailability in coastal mudflats. Environmental Pollution, 2013, 176, 18-25.	3.7	34
53	The polychaete worm <i>Nereis diversicolor</i> increases mercury lability and methylation in intertidal mudflats. Environmental Toxicology and Chemistry, 2013, 32, 1888-1895.	2.2	20
54	Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environmental Pollution, 2012, 171, 148-154.	3.7	60

#	Article	IF	CITATIONS
55	Modeling the photo-oxidation of dissolved organic matter by ultraviolet radiation in freshwater lakes: Implications for mercury bioavailability. Chemosphere, 2012, 88, 1220-1226.	4.2	21
56	Mercury Speciation and Distribution in Coastal Wetlands and Tidal Mudflats: Relationships with Sulphur Speciation and Organic Carbon. Water, Air, and Soil Pollution, 2011, 220, 313-326.	1.1	27
57	GIS Modelling of Intertidal Wetland Exposure Characteristics. Journal of Coastal Research, 2011, 275, 44-51.	0.1	10
58	Suspension of Multi-Walled Carbon Nanotubes (CNTs) in Freshwaters: Examining the Effect of CNT Size. Water, Air, and Soil Pollution, 2010, 208, 235-241.	1.1	14
59	Geographic and Seasonal Variation in Mercury Exposure of the Declining Rusty Blackbird. Condor, 2010, 112, 789-799.	0.7	86
60	Determining the magnitude of true analytical error in geochemical analysis. Geochemistry: Exploration, Environment, Analysis, 2010, 10, 355-364.	0.5	4
61	Photoreactions of Mercury in Surface Ocean Water: Gross Reaction Kinetics and Possible Pathways. Environmental Science & Environmental Science & Envir	4.6	106
62	Size distribution of methylmercury associated with particulate and dissolved organic matter in freshwaters. Science of the Total Environment, 2009, 408, 408-414.	3.9	38
63	Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC,) Tj ETQq $1\ 1\ 0$.	784314 rg	gBT ₄ Overlock
64	Dissolved Gaseous Mercury Concentrations and Mercury Volatilization in a Frozen Freshwater Fluvial Lake. Environmental Science & Environmental Science	4.6	18
65	The development and application of a mass balance model for mercury (total, elemental and methyl) using data from a remote lake (Big Dam West, Nova Scotia, Canada) and the multi-species multiplier method. Applied Geochemistry, 2008, 23, 467-481.	1.4	23
66	Continuous Analysis of Dissolved Gaseous Mercury and Mercury Volatilization in the Upper St. Lawrence River:Â Exploring Temporal Relationships and UV Attenuation. Environmental Science & Emp; Technology, 2007, 41, 5342-5348.	4.6	36
67	The ebullition of hydrogen, carbon monoxide, methane, carbon dioxide and total gaseous mercury from the Cornwall Area of Concern. Science of the Total Environment, 2007, 381, 256-262.	3.9	28
68	Gross Photoreduction Kinetics of Mercury in Temperate Freshwater Lakes and Rivers:Â Application to a General Model of DGM Dynamics. Environmental Science & Environmental Science & 2006, 40, 837-843.	4.6	91
69	The influence of forestry activity on the structure of dissolved organic matter in lakes: Implications for mercury photoreactions. Science of the Total Environment, 2006, 366, 880-893.	3.9	55
70	The Biogeochemistry and Fate of Mercury in the Environment. Metal lons in Biological Systems, 2005, 43, 221-238.	0.4	9
71	Abiotic Production of Methylmercury by Solar Radiation. Environmental Science & Emp; Technology, 2005, 39, 1071-1077.	4.6	82
72	Effect of Dissolved Organic Carbon on the Photoproduction of Dissolved Gaseous Mercury in Lakes:Â Potential Impacts of Forestry. Environmental Science & Eamp; Technology, 2004, 38, 2664-2672.	4.6	85

#	Article	IF	CITATIONS
73	Title is missing!. Water, Air, and Soil Pollution, 2003, 143, 271-288.	1.1	37
74	Continuous analysis of dissolved gaseous mercury in freshwater lakes. Science of the Total Environment, 2003, 304, 285-294.	3.9	41
75	Continuous Analysis of Dissolved Gaseous Mercury (DGM) and Mercury Flux in Two Freshwater Lakes in Kejimkujik Park, Nova Scotia:Â Evaluating Mercury Flux Models with Quantitative Data. Environmental Science & Technology, 2003, 37, 2226-2235.	4.6	77
76	Are Methylmercury Concentrations in the Wetlands of Kejimkujik National Park, Nova Scotia, Canada, Dependent on Geology?. Journal of Environmental Quality, 2003, 32, 2085-2094.	1.0	21
77	Dissolved Gaseous Mercury Profiles in Freshwaters. ACS Symposium Series, 2002, , 232-245.	0.5	2
78	Microbial Reduction and Oxidation of Mercury in Freshwater Lakes. Environmental Science & Emp; Technology, 2002, 36, 3064-3068.	4.6	158
79	Analysis of Methyl Mercury Binding to Freshwater Humic and Fulvic Acids by Gel Permeation Chromatography/Hydride Generation ICP-MS. Environmental Science & Echnology, 2000, 34, 4039-4043.	4.6	47