
Kamiya Mehla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510315/publications.pdf Version: 2024-02-01

ΚλΜΙΧΛ ΜΕΗΙΛ

#	Article	IF	CITATIONS
1	The cholesterol pathway: impact on immunity and cancer. Trends in Immunology, 2022, 43, 78-92.	2.9	47
2	CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer pathogenesis. Oncogene, 2022, 41, 971-982.	2.6	29
3	Inflammatory and immune effects on tumor progression. Trends in Immunology, 2022, 43, 93-95.	2.9	1
4	Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 2264.	1.7	14
5	Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology, 2021, 161, 1584-1600.	0.6	50
6	IgE-Based Therapeutic Combination Enhances Antitumor Response in Preclinical Models of Pancreatic Cancer. Molecular Cancer Therapeutics, 2021, 20, 2457-2468.	1.9	2
7	654â€Analysis of IDO-1 expression on dendritic cells and factors influencing its up- and downregulation in pancreatic cancer. , 2021, 9, A683-A683.		Ο
8	Metabolic Subtyping for Novel Personalized Therapies Against Pancreatic Cancer. Clinical Cancer Research, 2020, 26, 6-8.	3.2	28
9	SIRT1–NOX4 signaling axis regulates cancer cachexia. Journal of Experimental Medicine, 2020, 217, .	4.2	43
10	Preclinical Models for Studying the Impact of Macrophages on Cancer Cachexia. Current Protocols in Pharmacology, 2020, 91, e80.	4.0	3
11	Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188387.	3.3	19
12	Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Letters, 2020, 484, 29-39.	3.2	39
13	Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 2019, 5, 822-834.	3.8	273
14	A Polymeric Nanogel-Based Treatment Regimen for Enhanced Efficacy and Sequential Administration of Synergistic Drug Combination in Pancreatic Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 894-901.	1.3	16
15	Inhibition of geranylgeranyl diphosphate synthase is a novel therapeutic strategy for pancreatic ductal adenocarcinoma. Oncogene, 2019, 38, 5308-5320.	2.6	21
16	Microscale Gene Expression Analysis of Tumor-Associated Macrophages. Scientific Reports, 2018, 8, 2408.	1.6	8
17	Evaluation of Macrophage Polarization in Pancreatic Cancer Microenvironment Under Hypoxia. Methods in Molecular Biology, 2018, 1742, 265-276.	0.4	19
18	Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunology, Immunotherapy, 2018, 67, 445-457.	2.0	19

Kamiya Mehla

#	Article	IF	CITATIONS
19	MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell, 2017, 32, 71-87.e7.	7.7	373
20	Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth. Oncotarget, 2015, 6, 41146-41161.	0.8	75
21	Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer & Metabolism, 2014, 2, 18.	2.4	182
22	MUC1: A novel metabolic master regulator. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 126-135.	3.3	64
23	MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13787-13792.	3.3	207
24	Differential Expression of Metabolic Genes in Tumor and Stromal Components of Primary and Metastatic Loci in Pancreatic Adenocarcinoma. PLoS ONE, 2012, 7, e32996.	1.1	83