
Shuanglong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6510275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. Journal of the American Chemical Society, 2017, 139, 17082-17088.	6.6	506
2	Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. Journal of the American Chemical Society, 2019, 141, 7518-7525.	6.6	261
3	Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nature Communications, 2022, 13, 2662.	5.8	196
4	High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chemical Engineering Journal, 2022, 431, 133251.	6.6	100
5	Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 3251-3263.	7.3	94
6	Interatomic Electronegativity Offset Dictates Selectivity When Catalyzing the CO ₂ Reduction Reaction. Advanced Energy Materials, 2022, 12, .	10.2	91
7	Phosphineâ€Based Covalent Organic Framework for the Controlled Synthesis of Broadâ€Scope Ultrafine Nanoparticles. Small, 2020, 16, e1906005.	5.2	82
8	MOF-derived cobalt–nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2019, 11, 21259-21265.	2.8	81
9	Hydrogen gas-assisted synthesis of worm-like PtMo wavy nanowires as efficient catalysts for the methanol oxidation reaction. Journal of Materials Chemistry A, 2016, 4, 10508-10513.	5.2	61
10	One-pot synthesis of Ptlr tripods with a dendritic surface as an efficient catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 9107-9112.	5.2	58
11	Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity. Journal of Alloys and Compounds, 2020, 834, 155158.	2.8	54
12	In Situ Fabrication of Electrospun Carbon Nanofibers–Binary Metal Sulfides as Freestanding Electrode for Electrocatalytic Water Splitting. Advanced Fiber Materials, 2021, 3, 117-127.	7.9	53
13	Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms. Chemical Engineering Journal, 2020, 392, 123655.	6.6	52
14	Sublayer Stable Fe Dopant in Porous Pd Metallene Boosts Oxygen Reduction Reaction. ACS Nano, 2022, 16, 522-532.	7.3	52
15	In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Science Bulletin, 2020, 65, 640-650.	4.3	51
16	Low-Electronegativity Vanadium Substitution in Cobalt Carbide Induced Enhanced Electron Transfer for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 43261-43269.	4.0	49
17	Understanding the Role of Nanoscale Heterointerfaces in Core/Shell Structures for Water Splitting: Covalent Bonding Interaction Boosts the Activity of Binary Transition-Metal Sulfides. ACS Applied Materials & Interfaces, 2020, 12, 6250-6261.	4.0	42
18	Isolation of Metalloid Boron Atoms in Intermetallic Carbide Boosts the Catalytic Selectivity for Electrocatalytic N ₂ Fixation. Advanced Energy Materials, 2021, 11, 2102138.	10.2	42

Shuanglong Lu

#	Article	IF	CITATIONS
19	Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction. Chemical Engineering Journal, 2021, 404, 126523.	6.6	41
20	Single-atom catalysts for electrochemical clean energy conversion: recent progress and perspectives. Sustainable Energy and Fuels, 2020, 4, 996-1011.	2.5	36
21	One-pot pyrolysis synthesis of highly active Ru/RuOX nanoclusters for water splitting. Nano Research, 2022, 15, 1020-1026.	5.8	33
22	A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chemical Communications, 2021, 57, 2637-2640.	2.2	31
23	Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chemical Engineering Journal, 2021, 420, 130503.	6.6	27
24	Scalable NiCo <i>_x</i> S <i>_y</i> PANI@GF Membranes with Broadband Light Absorption and High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation. ACS Applied Energy Materials, 2021, 4, 3563-3572.	2.5	24
25	The 2D/2D p–n heterojunction of ZnCoMOF/gâ€C ₃ N ₄ with enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Organometallic Chemistry, 2021, 35, e6124.	1.7	23
26	One-dimensional, space-confined, solid-phase growth of the Cu9S5@MoS2 core–shell heterostructure for electrocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 595, 88-97.	5.0	22
27	Oxygen vacancy-enriched Bi2O3/BiFeO3 p-n heterojunction nanofibers with highly efficient photocatalytic activity under visible light irradiation. Applied Surface Science, 2021, 562, 150171.	3.1	22
28	Thermodynamically driven metal diffusion strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chemical Communications, 2021, 57, 10027-10030.	2.2	21
29	Heterostructure design of Cu ₂ O/Cu ₂ S core/shell nanowires for solar-driven photothermal water vaporization towards desalination. Sustainable Energy and Fuels, 2020, 4, 6023-6029.	2.5	19
30	Controlled growth of ultrafine metal nanoparticles mediated by solid supports. Nanoscale Advances, 2021, 3, 1865-1886.	2.2	18
31	Direct Z-scheme CdS–NiPc heterojunctions as noble metal-free photocatalysts for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 7683-7693.	2.1	18
32	Binary nickel iron phosphide composites with oxidized surface groups as efficient electrocatalysts for the oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 3518-3524.	2.5	17
33	Atom-precise incorporation of platinum into ultrafine transition metal carbides for efficient synergetic electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 4911-4919.	5.2	17
34	Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress and perspective. Nanoscale, 2022, 14, 277-288.	2.8	17
35	Heterointerface engineering in bimetal alloy/metal carbide for superior hydrogen evolution reaction. Renewable Energy, 2020, 161, 1036-1045.	4.3	16
36	Fine tuning of supported covalent organic framework with molecular active sites loaded as efficient electrocatalyst for water oxidation. Chemical Engineering Journal, 2021, 415, 127850.	6.6	16

SHUANGLONG LU

#	Article	IF	CITATIONS
37	High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions. New Journal of Chemistry, 2021, 45, 22255-22260.	1.4	16
38	Beyond Colloidal Synthesis: Nanofiber Reactor to Design Self-Supported Core–Shell Pd ₁₆ S ₇ /MoS ₂ /CNFs Electrode for Efficient and Durable Hydrogen Evolution Catalysis. ACS Applied Energy Materials, 2019, 2, 2013-2021.	2.5	15
39	Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. Journal of Colloid and Interface Science, 2022, 608, 1126-1134.	5.0	15
40	Boosting oxygen evolution through phase and electronic modulation of highly dispersed tungsten carbide with nickel doping. Journal of Colloid and Interface Science, 2021, 585, 258-266.	5.0	14
41	Oneâ€pot Synthesis of Pd/Azoâ€polymer as an Efficient Catalyst for 4â€Nitrophenol Reduction and Suzukiâ€Miyaura Coupling Reaction. Chemistry - an Asian Journal, 2021, 16, 837-844.	1.7	14
42	<i>In situ</i> synthesis of small Pt nanoparticles on chitin aerogel derived N doped ultra-thin carbon nanofibers for superior hydrogen evolution catalysis. New Journal of Chemistry, 2019, 43, 16490-16496.	1.4	11
43	A stable PdCu@Pd core-shell nanobranches with enhanced activity and methanol-tolerant for oxygen reduction reaction. Electrochimica Acta, 2020, 354, 136680.	2.6	11
44	Interannual variation, ecological risk and human health risk of heavy metals in oyster-cultured sediments in the Maowei Estuary, China, from 2011 to 2018. Marine Pollution Bulletin, 2020, 154, 111039.	2.3	10
45	Two-dimension on two-dimension growth: hierarchical Ni _{0.2} Mo _{0.8} N/Fe-doped Ni ₃ N nanosheet array for overall water splitting. RSC Advances, 2021, 11, 19797-19804.	1.7	7
46	When amine-based conducting polymers meet Au nanoparticles: suppressing H ₂ evolution and promoting the selective electroreduction of CO ₂ to CO at low overpotentials. Sustainable Energy and Fuels, 2021, 5, 779-786.	2.5	6
47	Interface engineering in core–shell Co ₉ S ₈ @MoS ₂ nanocrystals induces enhanced hydrogen evolution in acidic and alkaline media. New Journal of Chemistry, 2021, 45, 11167-11173.	1.4	5
48	Functionalized Conjugated Microporous Polymers for Growing Sub-3 nm Pd Nanoparticles. ACS Applied Nano Materials, 2022, 5, 10090-10096.	2.4	3
49	Broad‣cope Ultrafine Nanoparticles: Phosphineâ€Based Covalent Organic Framework for the Controlled Synthesis of Broad‣cope Ultrafine Nanoparticles (Small 8/2020). Small, 2020, 16, 2070042.	5.2	Ο