MÃ³nica Lopes-Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6509741/publications.pdf

Version: 2024-02-01

39 papers 732 citations

623188 14 h-index 24 g-index

41 all docs

41 docs citations

41 times ranked

1054 citing authors

#	Article	IF	Citations
1	The repertoire of the elongation of very long-chain fatty acids (Elovl) protein family is conserved in tambaqui (Colossoma macropomum): Gene expression profiles offer insights into the sexual differentiation process. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2022, 261, 110749.	0.7	5
2	A Robust Assay to Monitor Ataxin-3 Amyloid Fibril Assembly. Cells, 2022, 11, 1969.	1.8	3
3	SLC35A2-CDG: Novel variant and review. Molecular Genetics and Metabolism Reports, 2021, 26, 100717.	0.4	15
4	Compensatory epistasis explored by molecular dynamics simulations. Human Genetics, 2021, 140, 1329-1342.	1.8	6
5	Common polymorphic <i>OTC</i> variants can act as genetic modifiers of enzymatic activity. Human Mutation, 2021, 42, 978-989.	1.1	6
6	Evolution and Functional Characteristics of the Novel elovl8 That Play Pivotal Roles in Fatty Acid Biosynthesis. Genes, 2021, 12, 1287.	1.0	16
7	An ancestral nuclear receptor couple, PPAR-RXR, is exploited by organotins. Science of the Total Environment, 2021, 797, 149044.	3.9	7
8	Assessing the effects of PMM2 variants on protein stability. Molecular Genetics and Metabolism, 2021, 134, 344-352.	0.5	2
9	Genetic Variability of the Functional Domains of Chromodomains Helicase DNA-Binding (CHD) Proteins. Genes, 2021, 12, 1827.	1.0	7
10	GBA3: a polymorphic pseudogene in humans that experienced repeated gene loss during mammalian evolution. Scientific Reports, 2020, 10, 11565.	1.6	2
11	PseudoChecker: an integrated online platform for gene inactivation inference. Nucleic Acids Research, 2020, 48, W321-W331.	6.5	14
12	The Echinodermata PPAR: Functional characterization and exploitation by the model lipid homeostasis regulator tributyltin. Environmental Pollution, 2020, 263, 114467.	3.7	9
13	Losing Genes: The Evolutionary Remodeling of Cetacea Skin. Frontiers in Marine Science, 2020, 7, .	1.2	15
14	Essential genetic findings in neurodevelopmental disorders. Human Genomics, 2019, 13, 31.	1.4	41
15	Identification of a Novel Nucleobase-Ascorbate Transporter Family Member in Fish and Amphibians. Fishes, 2019, 4, 1.	0.7	11
16	Convergent inactivation of the skin-specific C-C motif chemokine ligand 27 in mammalian evolution. Immunogenetics, 2019, 71, 363-372.	1.2	9
17	Complete Inactivation of Sebum-Producing Genes Parallels the Loss of Sebaceous Glands in Cetacea. Molecular Biology and Evolution, 2019, 36, 1270-1280.	3.5	30
18	The Singularity of Cetacea Behavior Parallels the Complete Inactivation of Melatonin Gene Modules. Genes, 2019, 10, 121.	1.0	34

#	Article	IF	Citations
19	A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 227, 90-97.	0.7	36
20	Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor \hat{I}^3 by Organotins. Environmental Science & Environmental Scie	4.6	21
21	"Out of the Can― A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine, Sardina pilchardus. Genes, 2018, 9, 485.	1.0	30
22	Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evolutionary Biology, 2018, 18, 157.	3.2	40
23	Cetacea are natural knockouts for IL20. Immunogenetics, 2018, 70, 681-687.	1.2	19
24	Expansion, retention and loss in the Acyl-CoA synthetase $\hat{a} \in \infty$ Bubblegum $\hat{a} \in \bullet$ (Acsbg) gene family in vertebrate history. Gene, 2018, 664, 111-118.	1.0	16
25	Molecular and functional characterization of a fads2 orthologue in the Amazonian teleost, Arapaima gigas. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 203, 84-91.	0.7	28
26	$LXR\hat{l}_{\pm}$ and $LXR\hat{l}^{2}$ nuclear receptors evolved in the common ancestor of gnathostomes. Genome Biology and Evolution, 2017, 9, evw305.	1.1	10
27	Unusual loss of chymosin in mammalian lineages parallels neo-natal immune transfer strategies. Molecular Phylogenetics and Evolution, 2017, 116, 78-86.	1.2	15
28	Evolutionary functional elaboration of the Elovl2/5 gene family in chordates. Scientific Reports, 2016, 6, 20510.	1.6	60
29	A cytosolic carbonic anhydrase molecular switch occurs in the gills of metamorphic sea lamprey. Scientific Reports, 2016, 6, 33954.	1.6	20
30	A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms. Aquatic Toxicology, 2016, 174, 61-69.	1.9	16
31	Statins: An undesirable class of aquatic contaminants?. Aquatic Toxicology, 2016, 174, 1-9.	1.9	53
32	Basal Gnathostomes Provide Unique Insights into the Evolution of Vitamin B12 Binders. Genome Biology and Evolution, 2015, 7, 457-464.	1.1	6
33	The Origin and Diversity of Cpt1 Genes in Vertebrate Species. PLoS ONE, 2015, 10, e0138447.	1.1	16
34	Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates. BMC Evolutionary Biology, 2013, 13, 271.	3.2	60
35	Characterization of the Human Ornithine Transcarbamylase 3′ Untranslated Regulatory Region. DNA and Cell Biology, 2012, 31, 427-433.	0.9	7
36	Human carbamoyl phosphate synthetase I (CPSI): Insights on the structural role of the unknown function domains. Biochemical and Biophysical Research Communications, 2012, 421, 409-412.	1.0	7

#	Article	IF	CITATIONS
37	A novel Acetyl-CoA synthetase short-chain subfamily member 1 (Acss1) gene indicates a dynamic history of paralogue retention and loss in vertebrates. Gene, 2012, 497, 249-255.	1.0	12
38	The Evolution of Pepsinogen C Genes in Vertebrates: Duplication, Loss and Functional Diversification. PLoS ONE, 2012, 7, e32852.	1.1	19
39	Consequences of primer binding-sites polymorphisms on genotyping practice. Open Journal of Genetics, 2011, 01, 15-17.	0.1	9