List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6509104/publications.pdf Version: 2024-02-01

FENC HE

#	Article	IF	CITATIONS
1	Near-Infrared All-Fused-Ring Nonfullerene Acceptors Achieving an Optimal Efficiency-Cost-Stability Balance in Organic Solar Cells. CCS Chemistry, 2023, 5, 654-668.	7.8	29
2	Crystallography, Packing Mode, and Aggregation State of Chlorinated Isomers for Efficient Organic Solar Cells. CCS Chemistry, 2023, 5, 1118-1129.	7.8	21
3	Ladder-Type Thienoacenaphthopyrazine-Based Molecules: Synthesis, Properties, and Application to Construct High-Performance Polymer for Organic Solar Cells. CCS Chemistry, 2023, 5, 1318-1331.	7.8	4
4	High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chemical Engineering Journal, 2022, 427, 130949.	12.7	28
5	Over 21% Efficiency Stable 2D Perovskite Solar Cells. Advanced Materials, 2022, 34, e2107211.	21.0	160
6	Hierarchical Chiral Supramolecular Nanoarchitectonics with Molecular Detection: Helical Structure Controls upon Selfâ€Assembly and Coassembly. Macromolecular Rapid Communications, 2022, 43, e2100690.	3.9	3
7	Side hainâ€Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIRâ€II Fluorescence. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
8	Optimized bicontinuous interpenetrating network morphology formed by gradual chlorination to boost photovoltaic performance. Chemical Engineering Journal, 2022, 437, 135198.	12.7	17
9	Isomeric Nonfullerene Acceptors: Planar Conformation Leading to a Higher Efficiency. ACS Applied Energy Materials, 2022, 5, 4556-4563.	5.1	3
10	Oligomeric Acceptor: A "Twoâ€inâ€One―Strategy to Bridge Small Molecules and Polymers for Stable Solar Devices. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64
11	Ternary strategy: An analogue as third component reduces the energy loss and improves the efficiency of polymer solar cells. Journal of Energy Chemistry, 2022, 70, 67-73.	12.9	3
12	Aggregation of Small Molecule and Polymer Acceptors with 2D-Fused Backbones in Organic Solar Cells. Macromolecules, 2022, 55, 3353-3360.	4.8	7
13	Quasiplanar Heterojunction Allâ€Polymer Solar Cells: A Dual Approach to Stability. Advanced Functional Materials, 2022, 32, .	14.9	29
14	Efficient and Stable Quasiplanar Heterojunction Solar Cells with an Acetoxy-Substituted Wide-Bandgap Polymer. , 2022, 4, 1322-1331.		7
15	Conjugated polymers based on metalla-aromatic building blocks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
16	Reducing steric hindrance around electronegative atom in polymer simultaneously enhanced efficiency and stability of organic solar cells. Nano Energy, 2022, 101, 107611.	16.0	13
17	Chlorinated polymer solar cells simultaneously enhanced by fullerene and non-fullerene ternary strategies. Journal of Energy Chemistry, 2021, 54, 620-625.	12.9	9
18	17.1 %â€Efficient Ecoâ€Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor. Angewandte Chemie - International Edition, 2021, 60, 3238-3246.	13.8	156

#	Article	IF	CITATIONS
19	H- and J-aggregation inspiring efficient solar conversion. Journal of Materials Chemistry A, 2021, 9, 1119-1126.	10.3	49
20	17.1 %â€Efficient Ecoâ€Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor. Angewandte Chemie, 2021, 133, 3275-3283.	2.0	28
21	Chlorinated Random Terpolymers with Efficient Solar Conversion and Low Batch-to-Batch Variation. ACS Applied Polymer Materials, 2021, 3, 14-22.	4.4	9
22	Manipulating the solubility properties of polymer donors for high-performance layer-by-layer processed organic solar cells. Energy and Environmental Science, 2021, 14, 5919-5928.	30.8	55
23	Chlorinated Benzo[1,2â€b:4,5â€câ€2]dithiopheneâ€4,8â€dione Polymer Donor: A Small Atom Makes a Big Differe Advanced Science, 2021, 8, 2003641.	ence. 11.2	18
24	Selenium-containing two-dimensional conjugated fused-ring electron acceptors for enhanced crystal packing, charge transport, and photovoltaic performance. Journal of Materials Chemistry A, 2021, 9, 15665-15677.	10.3	18
25	Over 17.5% efficiency ternary organic solar cells with enhanced photon utilization <i>via</i> a medium band gap non-fullerene acceptor. Journal of Materials Chemistry A, 2021, 9, 16418-16426.	10.3	27
26	The antibacterial activities of MoS ₂ nanosheets towards multi-drug resistant bacteria. Chemical Communications, 2021, 57, 2998-3001.	4.1	33
27	Naphthalenothiophene Imide-Based Polymer Donor for High-Performance Polymer Solar Cells. Chemistry of Materials, 2021, 33, 1976-1982.	6.7	19
28	Configurational Isomers Induced Significant Difference in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2021, 31, 2100877.	14.9	58
29	Ternary organic solar cells with PCEs of up to 16.6% by two complementary acceptors working in alloy-like model. Organic Electronics, 2021, 91, 106085.	2.6	9
30	Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency. Joule, 2021, 5, 931-944.	24.0	63
31	Tuning the Molecular Weight of <scp>Chlorineâ€Substituted</scp> Polymer Donors for Small Energy Loss ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1651-1658.	4.9	20
32	Transformation from Rod-Like to Diamond-Like Micelles by Thermally Induced Nucleation Self-Assembly. Macromolecules, 2021, 54, 5278-5285.	4.8	14
33	Precisely Controlled Two-Dimensional Rhombic Copolymer Micelles for Sensitive Flexible Tunneling Devices. CCS Chemistry, 2021, 3, 1399-1409.	7.8	23
34	The application of single crystal diffraction technique in organic solar cells. Chinese Science Bulletin, 2021, 66, 3286-3298.	0.7	2
35	Push or Pull Electrons: Acetoxy and Carbomethoxy-Substituted Isomerisms in Organic Solar Cell Acceptors. Journal of Physical Chemistry Letters, 2021, 12, 4666-4673.	4.6	10
36	End-Group Modifications with Bromine and Methyl in Nonfullerene Acceptors: The Effect of Isomerism. ACS Applied Materials & amp; Interfaces, 2021, 13, 29737-29745.	8.0	10

#	Article	IF	CITATIONS
37	Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18%. Advanced Materials, 2021, 33, e2101279.	21.0	129
38	Recent Advances of Chlorination in Organic Solar Cells. Synlett, 2021, 32, 1297-1302.	1.8	9
39	17.6%â€Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3D Network Acceptor. Advanced Materials, 2021, 33, e2102778.	21.0	87
40	Structure–Property Relationships of Precisely Chlorinated Thiopheneâ€Substituted Acceptors. Advanced Functional Materials, 2021, 31, 2106524.	14.9	29
41	Isomerism: Minor Changes in the Bromine Substituent Positioning Lead to Notable Differences in Photovoltaic Performance. CCS Chemistry, 2021, 3, 2591-2601.	7.8	30
42	The cis- and trans-orientation of benzo[1,2-b:4,5-bâ€2]dithiophene-based isomers in organic solar cells. Materials Chemistry Frontiers, 2021, 5, 1486-1494.	5.9	4
43	Thiophene-Fused Perylenediimide-Based Polymer Acceptors for High-Performance All-Polymer Solar Cells. Macromolecules, 2021, 54, 1499-1506.	4.8	13
44	Effects of Halogenated End Groups on the Performance of Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2021, 13, 6147-6155.	8.0	18
45	Highly Efficient All-Polymer Solar Cells from a Dithieno[3,2- <i>f</i> :2′,3′- <i>h</i>]quinoxaline-Based Wide Band Gap Donor. Macromolecules, 2021, 54, 11468-11477.	4.8	19
46	Enhancement of All-Polymer Solar Cells by Addition of a Chlorinated Polymer and Formation of an Energy Cascade in a Nonhalogenated Solvent. ACS Applied Materials & Interfaces, 2021, 13, 58754-58762.	8.0	9
47	Formation of Hierarchical Architectures with Dimensional and Morphological Control in the Selfâ€Assembly of Conjugated Block Copolymers. Small Methods, 2020, 4, 1900470.	8.6	16
48	Inky flower-like supermicelles assembled from π-conjugated block copolymers. Polymer Chemistry, 2020, 11, 61-67.	3.9	7
49	Chlorination of Conjugated Side Chains To Enhance Intermolecular Interactions for Elevated Solar Conversion. Macromolecules, 2020, 53, 165-173.	4.8	19
50	An NIRâ€llâ€Emissive Photosensitizer for Hypoxiaâ€Tolerant Photodynamic Theranostics. Advanced Materials, 2020, 32, e2003471.	21.0	150
51	Rectangular Platelet Micelles with Controlled Aspect Ratio by Hierarchical Self-Assembly of Poly(3-hexylthiophene)- <i>b</i> -poly(ethylene glycol). Macromolecules, 2020, 53, 6555-6565.	4.8	39
52	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 16902-16909.	13.8	293
53	Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 17050-17057.	2.0	66
54	lsomeric effects of chlorinated end groups on efficient solar conversion. Journal of Materials Chemistry A, 2020, 8, 23955-23964.	10.3	18

#	Article	IF	CITATIONS
55	Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors. Nature Communications, 2020, 11, 5814.	12.8	29
56	Frontispiz: Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, .	2.0	0
57	Crystal Engineering in Organic Photovoltaic Acceptors: A 3D Network Approach. Advanced Energy Materials, 2020, 10, 2002678.	19.5	86
58	Addition of alkynes and osmium carbynes towards functionalized dï€â€"pï€ conjugated systems. Nature Communications, 2020, 11, 4651.	12.8	41
59	Frontispiece: Modulating Benzothiadiazoleâ€Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
60	Electronâ€Deficient and Quinoid Central Unit Engineering for Unfused Ringâ€Based A ₁ –D–A ₂ –D–A ₁ â€Type Acceptor Enables High Performance Nonfullerene Polymer Solar Cells with High <i>V</i> _{oc} and PCE Simultaneously. Small, 2020, 16, e1907681.	10.0	31
61	Bromination: Bromination: An Alternative Strategy for Nonâ€Fullerene Small Molecule Acceptors (Adv.) Tj ETQq1	1 0.78431 11.2	14 ₁ rgBT /Ove
62	Synergistic Effect of Alkyl Chain and Chlorination Engineering on High-Performance Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2020, 12, 28329-28336.	8.0	19
63	Chlorination: An Effective Strategy for Highâ€Performance Organic Solar Cells. Advanced Science, 2020, 7, 2000509.	11.2	92
64	Alkyl chain engineering of chlorinated acceptors for elevated solar conversion. Journal of Materials Chemistry A, 2020, 8, 8903-8912.	10.3	97
65	Trifluoromethylation Enables a 3D Interpenetrated Low-Band-Gap Acceptor for Efficient Organic Solar Cells. Joule, 2020, 4, 688-700.	24.0	206
66	Unraveling the Microstructureâ€Related Device Stability for Polymer Solar Cells Based on Nonfullerene Smallâ€Molecular Acceptors. Advanced Materials, 2020, 32, e1908305.	21.0	161
67	Bromination: An Alternative Strategy for Nonâ€Fullerene Small Molecule Acceptors. Advanced Science, 2020, 7, 1903784.	11.2	69
68	A Benzo[1,2â€ <i>b</i> :4,5â€ <i>c</i> ′]Dithiopheneâ€4,8â€Dioneâ€Based Polymer Donor Achieving an Efficier 16%. Advanced Materials, 2020, 32, e1907059.	ncy Over 21.0	70
69	An asymmetrical A–DAD–A-type acceptor simultaneously enhances voltage and current for efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 9670-9676.	10.3	27
70	Chlorination <i>vs.</i> fluorination: a study of halogenated benzo[<i>c</i>][1,2,5]thiadiazole-based organic semiconducting dots for near-infrared cellular imaging. New Journal of Chemistry, 2020, 44, 7740-7748.	2.8	7
71	Three-Dimensional Spirals of Conjugated Block Copolymers Driven by Screw Dislocation. Macromolecules, 2020, 53, 3217-3223.	4.8	24
72	Enhanced Photovoltaic Performance by Synergistic Effect of Chlorination and Selenophene π-Bridge. Macromolecules, 2020, 53, 2893-2901.	4.8	22

#	Article	IF	CITATIONS
73	Efficient Non-Fullerene Organic Photovoltaics Printed by Electrospray via Solvent Engineering. ACS Applied Materials & Interfaces, 2020, 12, 27405-27415.	8.0	20
74	3D Interpenetrating Network for High-Performance Nonfullerene Acceptors via Asymmetric Chlorine Substitution. Journal of Physical Chemistry Letters, 2019, 10, 4737-4743.	4.6	37
75	Carbon–oxygen-bridged hexacyclic non-fullerene acceptors with chlorinated end groups. Materials Chemistry Frontiers, 2019, 3, 1859-1865.	5.9	16
76	Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion. IScience, 2019, 17, 302-314.	4.1	103
77	Using Chlorine Atoms to Fine-Tune the Intermolecular Packing and Energy Levels of Efficient Nonfullerene Acceptors. ACS Applied Energy Materials, 2019, 2, 7663-7669.	5.1	17
78	Rylene Annulated Subphthalocyanine: A Promising Cone-Shaped Non-Fullerene Acceptor for Organic Solar Cells. , 2019, 1, 404-409.		38
79	Bromination of the Small-Molecule Acceptor with Fixed Position for High-Performance Solar Cells. Chemistry of Materials, 2019, 31, 8044-8051.	6.7	62
80	Highly stable and bright fluorescent chlorinated polymer dots for cellular imaging. New Journal of Chemistry, 2019, 43, 2540-2549.	2.8	7
81	Elevated Stability and Efficiency of Solar Cells via Ordered Alloy Co-Acceptors. ACS Energy Letters, 2019, 4, 1106-1114.	17.4	62
82	Highly fluorescent anthracene derivative as a non-fullerene acceptor in OSCs with small non-radiative energy loss of 0.22ÂeV and high PCEs of over 13%. Journal of Materials Chemistry A, 2019, 7, 10212-10216.	10.3	22
83	Synergistic Effect of Chlorination and Selenophene: Achieving Elevated Solar Conversion in Highly Aggregated Systems. Macromolecules, 2019, 52, 2393-2401.	4.8	16
84	From binary to quaternary: high-tolerance of multi-acceptors enables development of efficient polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 7815-7822.	10.3	21
85	Chlorination strategy on polymer donors toward efficient solar conversions. Journal of Energy Chemistry, 2019, 39, 208-216.	12.9	36
86	Multiple Fused Ring-Based Near-Infrared Nonfullerene Acceptors with an Interpenetrated Charge-Transfer Network. Chemistry of Materials, 2019, 31, 1664-1671.	6.7	67
87	Carrier Dynamics and Morphology Regulated by 1,8-Diiodooctane in Chlorinated Nonfullerene Polymer Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 936-942.	4.6	15
88	A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Science China Chemistry, 2019, 62, 238-244.	8.2	29
89	Overcoming the trade-off between Voc and Jsc: Asymmetric chloro-substituted two-dimensional benzo[1,2-b:4,5-b′]dithiophene-based polymer solar cells. Dyes and Pigments, 2019, 162, 746-754.	3.7	22
90	Carbon–Oxygenâ€Bridged Ladderâ€Type Building Blocks for Highly Efficient Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1804790.	21.0	139

#	Article	IF	CITATIONS
91	Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes. Nature Communications, 2018, 9, 865.	12.8	103
92	Chlorination of Side Chains: A Strategy for Achieving a High Open Circuit Voltage Over 1.0 V in Benzo[1,2-b:4,5-bâ€2]dithiophene-Based Non-Fullerene Solar Cells. ACS Applied Energy Materials, 2018, 1, 2365-2372.	5.1	54
93	Effect of the Molecular Configuration of Perylene Diimide Acceptors on Charge Transfer and Device Performance. ACS Applied Energy Materials, 2018, 1, 833-840.	5.1	19
94	9,9′â€Bifluorenylideneâ€Core Perylene Diimide Acceptors for Asâ€Cast Nonâ€Fullerene Organic Solar Cells: Th Isomeric Effect on Optoelectronic Properties. Chemistry - A European Journal, 2018, 24, 4149-4156.	e 3.3	31
95	Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics. Journal of Materials Chemistry A, 2018, 6, 2942-2951.	10.3	42
96	Regulating the optoelectronic properties of small molecule donors with multiple alternative electron-donor and acceptor units for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 8101-8108.	10.3	3
97	The integrated adjustment of chlorine substitution and two-dimensional side chain of low band gap polymers in organic solar cells. Polymer Chemistry, 2018, 9, 940-947.	3.9	30
98	Direct arylation polymerization toward efficient synthesis of benzo[1,2â€c:4,5â€c'] dithiopheneâ€4,8â€dione based donorâ€acceptor alternating copolymers for organic optoelectronic applications. Journal of Polymer Science Part A, 2018, 56, 2554-2564.	2.3	7
99	Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 39992-40000.	8.0	113
100	Multichloro-Substitution Strategy: Facing Low Photon Energy Loss in Nonfullerene Solar Cells. ACS Applied Energy Materials, 2018, 1, 6549-6559.	5.1	39
101	Alkyl Chain End Group Engineering of Small Molecule Acceptors for Non-Fullerene Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 4724-4730.	5.1	19
102	Over 7% photovoltaic efficiency of a semicrystalline donor-acceptor polymer synthesized via direct arylation polymerization. Dyes and Pigments, 2018, 158, 183-187.	3.7	10
103	A Chlorinated π-Conjugated Polymer Donor for Efficient Organic Solar Cells. Joule, 2018, 2, 1623-1634.	24.0	166
104	Organic Bulk Heterojunction Solar Cells. , 2018, , 61-107.		0
105	Chlorination of Low-Band-Gap Polymers: Toward High-Performance Polymer Solar Cells. Chemistry of Materials, 2017, 29, 2819-2830.	6.7	112
106	Design and Synthesis of Chlorinated Benzothiadiazole-Based Polymers for Efficient Solar Energy Conversion. ACS Energy Letters, 2017, 2, 753-758.	17.4	51
107	Hydroxyl-Terminated CuInS ₂ -Based Quantum Dots: Potential Cathode Interfacial Modifiers for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7362-7367.	8.0	20
108	Simultaneous Increase in Open-Circuit Voltage and Efficiency of Fullerene-Free Solar Cells through Chlorinated Thieno[3,4- <i>b</i>]thiophene Polymer Donor. ACS Energy Letters, 2017, 2, 1971-1977.	17.4	51

#	Article	IF	CITATIONS
109	From Semi- to Full-Two-Dimensional Conjugated Side-Chain Design: A Way toward Comprehensive Solar Energy Absorption. Macromolecules, 2017, 50, 9617-9625.	4.8	19
110	Fine Tuning of Open-Circuit Voltage by Chlorination in Thieno[3,4- <i>b</i>]thiophene–Benzodithiophene Terpolymers toward Enhanced Solar Energy Conversion. Macromolecules, 2017, 50, 4962-4971.	4.8	55
111	Influence of the positions of thiophenes and side chains on diketopyrrolopyrrole based narrow band-gap small molecules for organic solar cells. Dyes and Pigments, 2016, 133, 100-108.	3.7	5
112	Diketopyrrolopyrrole based A2-D-A1-D-A2 type small molecules for organic solar cells: Effects of substitution of benzene with thiophene. Dyes and Pigments, 2016, 130, 282-290.	3.7	21
113	Self-Seeding in One Dimension: A Route to Uniform Fiber-like Nanostructures from Block Copolymers with a Crystallizable Core-Forming Block. ACS Nano, 2013, 7, 3754-3766.	14.6	98
114	Chemistry and materials based on 5,5′-bibenzo[c][1,2,5]thiadiazole. Chemical Communications, 2013, 49, 5730.	4.1	18
115	Polyselenopheno[3,4- <i>b</i>]selenophene for Highly Efficient Bulk Heterojunction Solar Cells. ACS Macro Letters, 2012, 1, 361-365.	4.8	120
116	Incremental optimization in donor polymers for bulk heterojunction organic solar cells exhibiting high performance. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1057-1070.	2.1	29
117	Mediating Solar Cell Performance by Controlling the Internal Dipole Change in Organic Photovoltaic Polymers. Macromolecules, 2012, 45, 6390-6395.	4.8	138
118	Stable water-dispersed organic nanoparticles: preparation, optical properties, and cell imaging application. Nanoscale, 2011, 3, 2261.	5.6	15
119	Fluorescent "Barcode―Multiblock Co-Micelles via the Living Self-Assembly of Di- and Triblock Copolymers with a Crystalline Core-Forming Metalloblock. Journal of the American Chemical Society, 2011, 133, 9095-9103.	13.7	102
120	Stille Polycondensation for Synthesis of Functional Materials. Chemical Reviews, 2011, 111, 1493-1528.	47.7	647
121	How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach. Journal of Physical Chemistry Letters, 2011, 2, 3102-3113.	4.6	136
122	Tetrathienoanthracene-Based Copolymers for Efficient Solar Cells. Journal of the American Chemical Society, 2011, 133, 3284-3287.	13.7	156
123	Examining the Effect of the Dipole Moment on Charge Separation in Donor–Acceptor Polymers for Organic Photovoltaic Applications. Journal of the American Chemical Society, 2011, 133, 20468-20475.	13.7	404
124	Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells. Nano Letters, 2011, 11, 3707-3713.	9.1	415
125	Are we there yet? Design of better conjugated polymers for polymer solar cells. Journal of Materials Chemistry, 2011, 21, 18934.	6.7	156
126	Electronic Processes in Conjugated Diblock Oligomers Mimicking Low Band-Gap Polymers: Experimental and Theoretical Spectral Analysis. Journal of Physical Chemistry B, 2010, 114, 14505-14513.	2.6	27

#	Article	IF	CITATIONS
127	Synthesis and Self-Assembly of Fluorescent Micelles from Poly(ferrocenyldimethylsilane-b-2-vinylpyridine-b-2,5-di(2′-ethylhexyloxy)-1,4-phenylvinylene) Triblock Copolymer. Macromolecules, 2009, 42, 7953-7960.	4.8	36
128	Ground, Excited Structures and Photoelectronic Properties of Poly(p-phenylenevinylene) Oligomers with Biphenyl Bridge. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2009, 25, 869-875.	4.9	0
129	Small-molecular white organic light-emitting devices employing 2, 5, 2′, 5′-tetra (p-trifluoromethylstyryl)-biphenyl as single-emitting component. Optical and Quantum Electronics, 2008, 40, 57-63.	3.3	2
130	A solutionâ€processible poly(<i>p</i> â€phenylene vinylene) without alkyl substitution: Introducing the <i>cis</i> â€vinylene segments in polymer chain for improved solubility, blue emission, and high efficiency. Journal of Polymer Science Part A, 2008, 46, 5242-5250.	2.3	35
131	NMR signal assignment of <i>cis</i> / <i>trans</i> â€conformational segments in MEHâ€CNâ€PPV. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1105-1113.	2.1	13
132	Poly(<i>p</i> â€phenylene vinylene) Derivatives with Different Contents of <i>cis</i> â€Olefins and their Effect on the Optical Properties. Macromolecular Chemistry and Physics, 2008, 209, 1381-1388.	2.2	24
133	Theoretical Studies on the One―and Twoâ€Photon Absorption Properties of Doubleâ€bis(styryl)benzene Derivatives. Chinese Journal of Chemistry, 2008, 26, 77-84.	4.9	2
134	Theoretical study of 2,5-diphenyl-1,4-distyrylbenzene (A model compound of PPV): A comparison of the electronic structure and photophysical properties of cis- and trans-isomers. Chemical Physics, 2008, 345, 23-31.	1.9	4
135	Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties. Journal of Materials Chemistry, 2008, 18, 4802.	6.7	40
136	Highly Efficient Blue Organic Light-Emitting Devices Based on Improved Guest/Host Combination. Journal of Physical Chemistry C, 2008, 112, 12024-12029.	3.1	21
137	Supramolecular Network Conducting the Formation of Uniaxially Oriented Molecular Crystal of Cyano Substituted Oligo(<i>p</i> -phenylene vinylene) and Its Amplified Spontaneous Emission (ASE) Behavior. Chemistry of Materials, 2008, 20, 7312-7318.	6.7	88
138	Cruciform oligo(phenylenevinylene) with a bipyridine bridge: synthesis, its rhenium(i) complex and photovoltaic properties. Chemical Communications, 2008, , 3912.	4.1	27
139	Blue and white organic light-emitting devices using oligo(phenylenvinylene) as a blue emitter. Semiconductor Science and Technology, 2007, 22, 214-217.	2.0	5
140	Thermal Cycloaddition Facilitated by Orthogonal π–π Organization through Conformational Transfer in a Swivel-Cruciform Oligo(phenylenevinylene). Angewandte Chemie - International Edition, 2007, 46, 3245-3248.	13.8	18
141	Diphenylamine-Substituted Cruciform Oligo(phenylene vinylene): Enhanced One- and Two-Photon Excited Fluorescence in the Solid State. Advanced Functional Materials, 2007, 17, 1551-1557.	14.9	67
142	High Efficiency Deep-Blue Organic Light-Emitting Devices. , 2006, , .		0
143	Bright and colour stable white polymer light-emitting diodes. Semiconductor Science and Technology, 2006, 21, L16-L19.	2.0	28
144	High-performance blue electroluminescence devices based on distyrylbenzene derivatives. Applied Physics Letters, 2006, 88, 263503.	3.3	30

#	Article	IF	CITATIONS
145	Efficient blue organic light-emitting devices based on oligo(phenylenevinylene). Applied Physics Letters, 2006, 88, 223508.	3.3	7
146	Oligomeric Phenylenevinylene with Cross Dipole Arrangement and Amorphous Morphology: Enhanced Solid-State Luminescence Efficiency and Electroluminescence Performance. Advanced Materials, 2005, 17, 2710-2714.	21.0	71
147	Blue electroluminescent devices based on a trimeric phenylenvinylene derivative as emitting layer. Thin Solid Films, 2005, 492, 275-278.	1.8	2
148	Supramolecular Interactions Induced Fluorescence in Crystal:  Anomalous Emission of 2,5-Diphenyl-1,4-distyrylbenzene with All cis Double Bonds. Chemistry of Materials, 2005, 17, 1287-1289.	6.7	100
149	White organic light-emitting devices using 2,5,2′,5′-tetrakis(4′-biphenylenevinyl)-biphenyl as blue light-emitting layer. Applied Physics Letters, 2004, 84, 4457-4459.	3.3	35
150	A novel amorphous oligo(phenylenevinylene) dimer with a biphenyl linkage center and fluorene end groups for electroluminescent devices. Journal of Materials Chemistry, 2004, 14, 2735.	6.7	16
151	Highly efficient blue organic light-emitting devices using oligo(phenylenevinylene) dimers as an emitting layer. Semiconductor Science and Technology, 2004, 19, L78-L80.	2.0	11
152	Twisted PPV copolymers with efficient blue light emitting. Synthetic Metals, 2003, 135-136, 209-210.	3.9	6
153	Synthesis, characteristics and luminescence properties of oligo(phenylenevinylene) dimers with a biphenyl linkage centerElectronic Supplementary Information (ESI) available: general experimental procedure, synthesis and characteristization of monomers and oligomers, and OLEDs fabrications. See http://www.rsc.org/suppdata/cc/b3/b306694k/. Chemical Communications. 2003 2206.	4.1	30
154	Sideâ€Chainâ€Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIRâ€I Fluorescence. Angewandte Chemie, 0, , .	2.0	2
155	Oligomeric Acceptor: A "Twoâ€inâ€One―Strategy to Bridge Small Molecules and Polymers for Stable Solar Devices. Angewandte Chemie, 0, , .	2.0	1
156	Subtle Effect of Alkyl Substituted π-Bridges on Dibenzo[a,c]phenazine Based Polymer Donors towards Enhanced Photovoltaic Performance. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	1
157	Morphologically Tunable Supramolecular Rectangular Microsheet and Microsaw Constructed by Hierarchical Selfâ€assembly Based on Hydrogen Bonds. Macromolecular Rapid Communications, 0, , 2200368.	3.9	0