Salah Er-Raki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6508949/publications.pdf

Version: 2024-02-01

76	3,147	30	54
papers	citations	h-index	g-index
89	89	89	2875
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 2004, 125, 241-258.	1.9	397
2	Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agricultural Water Management, 2006, 79, 1-27.	2.4	348
3	Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agricultural Water Management, 2007, 87, 41-54.	2.4	223
4	Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sensing of Environment, 2018, 211, 321-337.	4.6	118
5	Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management, 2016, 163, 219-235.	2.4	109
6	Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters?. Journal of Arid Environments, 2010, 74, 1587-1596.	1.2	96
7	Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agricultural Water Management, 2010, 97, 1769-1778.	2.4	94
8	Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrology and Earth System Sciences, 2014, 18, 1165-1188.	1.9	84
9	Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET. Agricultural Water Management, 2008, 95, 309-321.	2.4	81
10	Combining Satellite Remote Sensing Data with the FAO-56 Dual Approach for Water Use Mapping In Irrigated Wheat Fields of a Semi-Arid Region. Remote Sensing, 2010, 2, 375-387.	1.8	70
11	The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region. Agricultural Water Management, 2007, 89, 173-184.	2.4	69
12	Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco. Remote Sensing, 2015, 7, 3783-3807.	1.8	69
13	Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data. Remote Sensing, 2020, 12, 72.	1.8	69
14	Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific Reports, 2019, 9, 19142.	1.6	67
15	Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid region. Agricultural Water Management, 2016, 177, 181-192.	2.4	65
16	Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index. Agricultural Water Management, 2013, 122, 12-19.	2.4	60
17	Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance-, sap flow-, lysimeter- and FAO-based methods. Agricultural and Forest Meteorology, 2019, 265, 310-326.	1.9	59
18	Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a metaâ€analysis approach. Water Resources Research, 2016, 52, 3663-3684.	1.7	56

#	Article	IF	CITATIONS
19	The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat. Hydrology and Earth System Sciences, 2015, 19, 4653-4672.	1.9	52
20	Citrus orchard evapotranspiration: Comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosystems, 2009, 143, 201-208.	0.8	46
21	Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco. Water Resources Management, 2013, 27, 4697-4714.	1.9	45
22	Using an unsupervised approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal satellite images. Applied Soft Computing Journal, 2015, 30, 1-13.	4.1	42
23	Calibrating an evapotranspiration model using radiometric surface temperature, vegetation cover fraction and near-surface soil moisture data. Agricultural and Forest Meteorology, 2018, 256-257, 104-115.	1.9	42
24	Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa. Agricultural Water Management, 2017, 193, 71-88.	2.4	39
25	Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco. Remote Sensing, 2021, 13, 3101.	1.8	39
26	Estimating the water budget components of irrigated crops: Combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data. Agricultural Water Management, 2018, 208, 120-131.	2.4	37
27	A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling. Agricultural Water Management, 2013, 119, 1-9.	2.4	36
28	Modified Penman–Monteith equation for monitoring evapotranspiration of wheat crop: Relationship between the surface resistance and remotely sensed stress index. Biosystems Engineering, 2017, 164, 68-84.	1.9	35
29	Irrigation retrieval from Landsat optical/thermal data integrated into a crop water balance model: A case study over winter wheat fields in a semi-arid region. Remote Sensing of Environment, 2020, 239, 111627.	4.6	35
30	Water use efficiency and yield of winter wheat under different irrigation regimes in a semi-arid region. Agricultural Sciences, 2011, 02, 273-282.	0.2	35
31	Including Sentinel-1 radar data to improve the disaggregation of MODIS land surface temperature data. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150, 11-26.	4.9	32
32	Combining a large aperture scintillometer and estimates of available energy to derive evapotranspiration over several agricultural fields in a semi-arid region. Plant Biosystems, 2009, 143, 209-221.	0.8	29
33	Irrigation scheduling of a classical gravity network based on the Covariance Matrix Adaptation – Evolutionary Strategy algorithm. Computers and Electronics in Agriculture, 2014, 102, 64-72.	3.7	29
34	Consistency between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of Crop Evapotranspiration. Remote Sensing, 2015, 7, 10444-10479.	1.8	28
35	Stepwise Disaggregation of SMAP Soil Moisture at 100 m Resolution Using Landsat-7/8 Data and a Varying Intermediate Resolution. Remote Sensing, 2019, 11, 1863.	1.8	28
36	A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco. Remote Sensing, 2014, 6, 11182-11203.	1.8	27

#	Article	IF	Citations
37	Linkages between Rainfed Cereal Production and Agricultural Drought through Remote Sensing Indices and a Land Data Assimilation System: A Case Study in Morocco. Remote Sensing, 2020, 12, 4018.	1.8	27
38	Evaluation and analysis of deep percolation losses of drip irrigated citrus crops under non-saline and saline conditions in a semi-arid area. Biosystems Engineering, 2018, 165, 10-24.	1.9	24
39	Toward a Surface Soil Moisture Product at High Spatiotemporal Resolution: Temporally Interpolated, Spatially Disaggregated SMOS Data. Journal of Hydrometeorology, 2018, 19, 183-200.	0.7	22
40	An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data. Hydrology and Earth System Sciences, 2020, 24, 1781-1803.	1.9	22
41	A phenomenological model of soil evaporative efficiency using surface soil moisture and temperature data. Agricultural and Forest Meteorology, 2018, 256-257, 501-515.	1.9	21
42	Assessing Irrigation Water Use with Remote Sensing-Based Soil Water Balance at an Irrigation Scheme Level in a Semi-Arid Region of Morocco. Remote Sensing, 2021, 13, 1133.	1.8	21
43	Disaggregation of SMOS Soil Moisture to 100 m Resolution Using MODIS Optical/Thermal and Sentinel-1 Radar Data: Evaluation over a Bare Soil Site in Morocco. Remote Sensing, 2017, 9, 1155.	1.8	17
44	A simple and alternative approach based on reference evapotranspiration and leaf area index for estimating tree transpiration in semi-arid regions. Agricultural Water Management, 2017, 188, 61-68.	2.4	16
45	Evaluation of Digital Hemispherical Photography and Plant Canopy Analyzer for Measuring Vegetation Area Index of Orange Orchards. Journal of Agronomy, 2009, 8, 67-72.	0.4	15
46	Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions. Agricultural Water Management, 2022, 260, 107290.	2.4	13
47	Vulnerability of Barley, Maize, and Wheat Yields to Variations in Growing Season Precipitation in Morocco. Applied Sciences (Switzerland), 2022, 12, 3407.	1.3	11
48	On the Utility of High-Resolution Soil Moisture Data for Better Constraining Thermal-Based Energy Balance over Three Semi-Arid Agricultural Areas. Remote Sensing, 2021, 13, 727.	1.8	10
49	Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method. Agricultural Water Management, 2021, 250, 106827.	2.4	10
50	Optimizing the Sowing Date to Improve Water Management and Wheat Yield in a Large Irrigation Scheme, through a Remote Sensing and an Evolution Strategy-Based Approach. Remote Sensing, 2021, 13, 3789.	1.8	10
51	Evapotranspiration partition using the multiple energy balance version of the ISBA-A-g _{samp;lt;/sub> land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco). Hydrology and Earth System Sciences, 2020, 24, 3789-3814.}	1.9	10
52	Disinfection of Treated Wastewater and its Reuse in the Irrigation of Golf Grass: The Case of Plant M'zar Agadir-Morocco. Water (Switzerland), 2011, 3, 1128-1138.	1.2	8
53	Ability of a soil–vegetation–atmosphere transfer model and a two-source energy balance model to predict evapotranspiration for several crops and climate conditions. Hydrology and Earth System Sciences, 2019, 23, 5033-5058.	1.9	8
54	Integrating thermal stress indexes within Shuttleworth–Wallace model for evapotranspiration mapping over a complex surface. Irrigation Science, 2021, 39, 45-61.	1.3	8

#	Article	IF	Citations
55	C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco). Earth System Science Data, 2021, 13, 3707-3731.	3.7	8
56	A Systematic National Stocktake of Crop Models in Morocco. Ecological Modelling, 2022, 470, 110036.	1.2	8
57	Combining a Two Source Energy Balance Model Driven by MODIS and MSG-SEVIRI Products with an Aggregation Approach to Estimate Turbulent Fluxes over Sparse and Heterogeneous Vegetation in Sahel Region (Niger). Remote Sensing, 2018, 10, 974.	1.8	7
58	Performance Evaluation of the WOFOST Model for Estimating Evapotranspiration, Soil Water Content, Grain Yield and Total Above-Ground Biomass of Winter Wheat in Tensift Al Haouz (Morocco): Application to Yield Gap Estimation. Agronomy, 2021, 11, 2480.	1.3	7
59	Snow hydrology in the Moroccan Atlas Mountains. Journal of Hydrology: Regional Studies, 2022, 42, 101101.	1.0	7
60	Multi-Scale Evaluation of the TSEB Model over a Complex Agricultural Landscape in Morocco. Remote Sensing, 2020, 12, 1181.	1.8	6
61	A Simple Light-Use-Efficiency Model to Estimate Wheat Yield in the Semi-Arid Areas. Agronomy, 2020, 10, 1524.	1.3	5
62	Temporal Calibration of an Evaporation-Based Spatial Disaggregation Method of SMOS Soil Moisture Data. Remote Sensing, 2020, 12, 1671.	1.8	4
63	Retrieving Crop Albedo Based on Radar Sentinel-1 and Random Forest Approach. Remote Sensing, 2021, 13, 3181.	1.8	4
64	Sequential Downscaling of the SMOS Soil Moisture at 100 M Resolution Via a Variable Intermediate Spatial Resolution. , $2018, , .$		3
65	Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models. Agricultural Water Management, 2022, 270, 107728.	2.4	3
66	Identifying gaps in actual and simulated/potential yield and growing season precipitation in Morocco. Environmental Science and Pollution Research, 2022, 29, 84844-84860.	2.7	2
67	Numerical and experimental study of free convection through a horizontal openâ€ended axisymmetric cavity. Heat Transfer - Asian Research, 2018, 47, 437-457.	2.8	1
68	Including Radar Soil Moisture into Two-Source Energy Balance Model for Improving Turbulent Fluxes Estimates., 2021,,.		1
69	A Calibration/Disaggregation Coupling Scheme for Retrieving Soil Moisture at High Spatio-Temporal Resolution: Synergy between SMAP Passive Microwave, MODIS/Landsat Optical/Thermal and Sentinel-1 Radar Data. Sensors, 2021, 21, 7406.	2.1	1
70	Peer review report 1 on Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 2015, 3, 5.	1.0	0
71	Evaporation-based disaggregation of surface soil moisture data: The dispatch method, the CATDS product and on-going research. , 2017, , .		0
72	ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN DE UN VIÑEDO DE UVA DE MESA (Vitis vinÃfera) CON IMÃGENES SATELITALES SENTINEL-2. Agrociencia, 2021, 55, 369-387.	0.1	0

#	Article IF	CITATIONS
73	Assimilation of Smap Based Disaggregated Soil Moisture for Improving Soil Evaporation Estimates by FAO-2Kc Model., 2021,,.	O
74	Improving Surface Evapotranspiration Components Through Assimilating Soil Moisture and Land Surface Temperature into FAO-56 Model. , $2021, \ldots$	0
75	Ressources en eau, sociétés et territoires méditerranéens. L'interdisciplinarité pour répondre aux défis du changement climatique. Natures Sciences Societes, 2019, 27, 219-224.	O
76	Integrating Remote Sensing Data into Fuzzy Control System for Variable Rate Irrigation Estimates. , 0, , .	0