K V Manukyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6508665/publications.pdf

Version: 2024-02-01

65 2,565 21 50 papers citations h-index g-index

65 65 65 2870 all docs docs citations times ranked citing authors

1 Nuclear Instrum Detectors and A	characterization of isotopically pure Mo targets for nuclear science measurements.		
	ents and Methods in Physics Résearch, Section A: Accelerators, Spectrometers, ssociated Equipment, 2022, 1034, 166763.	1.6	3
Spontaneous Co Journal of Physic	ystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. cal Chemistry C, 2022, 126, 12301-12312.	3.1	3
3 Irradiation-Drive 3 Materials &	n Restructuring of UO2 Thin Films: Amorphization and Crystallization. ACS Applied; Interfaces, 2021, 13, 35153-35164.	8.0	10
Combustion in t Combustion and	the ZrF4-Mg-Si and ZrF4-Al-Si systems for preparation of zirconium silicides. d Flame, 2021, 232, 111514.	5.2	3
5 Hyperstoichiom Inorganic Chem	etric Uranium Dioxides: Rapid Synthesis and Irradiation-Induced Structural Changes. istry, 2021, 60, 18938-18949.	4.0	11
	n-doped zinc orthosilicate as a pigment for thermoregulating coatings. Ceramics 020, 46, 4992-4997.	4.8	15
and Flame, 2020	s and kinetics of solution combustion synthesis: Ni(NO3)2Â+Âfuels systems. Combustion 0, 221, 110-119. leasurements to low-lying excited final states in the <mml:math< td=""><td>5.2</td><td>17</td></mml:math<>	5.2	17
8 /> <mml:none /> <mml:mn>24 /> <mml:mo>*<!--</td--><td><pre></pre></td></mml:mo></mml:mn>f±<mml:mo>,<mml:mi>f±</mml:mi><mml:mo>,<mml:mi>f±<mml:mi><mml:mi><mml mml:mi="">f±</mml><mml mml:mi="">f±</mml><mml mi="" mml="">f±</mml>f±f±f±f±<td>:mo><mn< td=""><td>nl:mi>p</td></mn<></td></mml:mi></mml:mi></mml:mi></mml:mo></mml:mo></mml:none 	<pre></pre>	:mo> <mn< td=""><td>nl:mi>p</td></mn<>	nl:mi>p

#	Article	IF	CITATIONS
19	Nanoscale Metastable ε-Fe ₃ N Ferromagnetic Materials by Self-Sustained Reactions. Inorganic Chemistry, 2019, 58, 5583-5592.	4.0	17
20	Size-tunable germanium particles prepared by self-sustaining reduction of germanium oxide. Journal of Solid State Chemistry, 2019, 270, 92-97.	2.9	2
21	One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon, 2019, 142, 51-59.	10.3	79
22	The Solid Flame Phenomenon: A Novel Perspective. Advanced Engineering Materials, 2018, 20, 1701065.	3.5	23
23	Shock-induced reaction synthesis of cubic boron nitride. Applied Physics Letters, 2018, 112, 171903.	3.3	9
24	Mesoporous metal - silica materials: Synthesis, catalytic and thermal properties. Microporous and Mesoporous Materials, 2018, 257, 175-184.	4.4	18
25	Kinetics and Mechanism of Ignition in Reactive Al/Ni Nanostructured Materials. Journal of Physical Chemistry C, 2018, 122, 27082-27092.	3.1	21
26	Microwave-assisted preparation and characterization of nanoscale rhenium diboride. Ceramics International, 2018, 44, 22339-22344.	4.8	6
27	Structural transformations of highly porous nickel catalysts during ethanol conversion towards hydrogen. International Journal of Hydrogen Energy, 2018, 43, 13225-13236.	7.1	11
28	Combustion and materials synthesis. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26, 143-144.	0.5	2
29	Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives. Progress in Energy and Combustion Science, 2017, 63, 79-118.	31.2	157
30	Combustion Synthesis of Ni-SiO2 Nanoscale Materials. Microscopy and Microanalysis, 2017, 23, 1866-1867.	0.4	0
31	Template-Assisted Solution Combustion Synthesis. , 2017, , 376-378.		0
32	Two-Dimensional Materials., 2017,, 408-410.		0
33	Solution Combustion Synthesis of Catalysts. , 2017, , 347-348.		3
34	Measurements of conversion electrons in the s-process branching point nucleus 176Lu. European Physical Journal A, 2016, 52, 1.	2.5	7
35	Mechanochemical synthesis of methylammonium lead iodide perovskite. Journal of Materials Science, 2016, 51, 9123-9130.	3.7	35
36	Solution Combustion Synthesis of Nanoscale Materials. Chemical Reviews, 2016, 116, 14493-14586.	47.7	933

#	ARTICLE: cision Determination of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>i²</mml:mi></mml:math> Decay <mml:math< th=""><th>IF</th><th>Citations</th></mml:math<>	IF	Citations
37	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi>Q</mml:mi><mml:mi>EC</mml:mi></mml:msub> Value of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>7.8</td><td>12</td></mml:math>	7.8	12
38	Multiscale X-ray fluorescence mapping complemented by Raman spectroscopy for pigment analysis of a 15th century Breton manuscript. Analytical Methods, 2016, 8, 7696-7701.	2.7	7
39	Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition. Journal of Physics and Chemistry of Solids, 2016, 96-97, 115-120.	4.0	11
40	Exothermic Self-Sustained Waves with Amorphous Nickel. Journal of Physical Chemistry C, 2016, 120, 5827-5838.	3.1	23
41	Solid-flame: Experimental validation. Combustion and Flame, 2016, 163, 487-493.	5.2	36
42	TEM Analysis of Structural Transformation in Al/Ni Nanomaterials under High Energy Ion Irradiation. Microscopy and Microanalysis, 2015, 21, 583-584.	0.4	0
43	Combustion synthesis of copper–nickel catalysts for hydrogen production from ethanol. Chemical Engineering Journal, 2015, 278, 46-54.	12.7	62
44	Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations. Journal of Physical Chemistry C, 2015, 119, 16131-16138.	3.1	92
45	Irradiation-Enhanced Reactivity of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials. ACS Applied Materials & Description of Multilayer Al/Ni Nanomaterials & Description of Multilayer Al/Ni Na	8.0	33
46	Preparation and Reactivity of Gasless Nanostructured Energetic Materials. Journal of Visualized Experiments, 2015, , e52624.	0.3	2
47	Highly stable Ni–Al2O3 catalyst prepared from a Ni–Al layered double hydroxide for ethanol decomposition toward hydrogen. Applied Catalysis A: General, 2015, 508, 37-44.	4.3	32
48	Combustion/micropyretic synthesis of atomically thin two-dimensional materials for energy applications. Current Opinion in Chemical Engineering, 2015, 7, 16-22.	7.8	18
49	The Effect of Silicon Powder Characteristics on the Combustion of Silicon/Teflon/Viton Nanoenergetics. Propellants, Explosives, Pyrotechnics, 2014, 39, 337-347.	1.6	19
50	Low temperature decomposition of hydrous hydrazine over FeNi/Cu nanoparticles. Applied Catalysis A: General, 2014, 476, 47-53.	4.3	94
51	In Situ Preparation of Highly Stable Ni-Based Supported Catalysts by Solution Combustion Synthesis. Journal of Physical Chemistry C, 2014, 118, 26191-26198.	3.1	58
52	Ultrasmall α-Fe ₂ O ₃ Superparamagnetic Nanoparticles with High Magnetization Prepared by Template-Assisted Combustion Process. Journal of Physical Chemistry C, 2014, 118, 16264-16271.	3.1	104
53	TEM/STEM Analysis of NiO Reduction to Ni during Annealing in H2 Atmosphere. Microscopy and Microanalysis, 2014, 20, 1898-1899.	0.4	0
54	Combustion synthesis of graphene materials. Carbon, 2013, 62, 302-311.	10.3	36

#	Article	lF	CITATIONS
55	Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies. Journal of Physical Chemistry C, 2013, 117, 24417-24427.	3.1	170
56	Photoactive Porous Silicon Nanopowder. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2943-2951.	8.0	24
57	W and two-dimensional WO ₃ /W nanocrystals produced by controlled self-sustaining reduction of sodium tungstate. Journal of Materials Research, 2013, 28, 2611-2621.	2.6	5
58	Microstructure-reactivity relationship of Ti + C reactive nanomaterials. Journal of Applied Physics, 2013, 113, 024302.	2.5	27
59	Phase formation mechanism of the NiÂ+ÂZrÂ+Âpolytetrafluoroethylene reactive mixture. Journal of Thermal Analysis and Calorimetry, 2012, 110, 619-623.	3.6	3
60	Tailored Reactivity of Ni+Al Nanocomposites: Microstructural Correlations. Journal of Physical Chemistry C, 2012, 116, 21027-21038.	3.1	97
61	Reaction pathway in the MoO3+Mg+C reactive mixtures. International Journal of Refractory Metals and Hard Materials, 2012, 31, 28-32.	3.8	34
62	Mechanism of Molten-Salt-Controlled Thermite Reactions. Industrial & Engineering Chemistry Research, 2011, 50, 10982-10988.	3.7	20
63	Direct reduction of ammonium molybdate to elemental molybdenum by combustion reaction. Chemical Engineering Journal, 2011, 168, 925-930.	12.7	45
64	Reduction of MoO3 by Zn: Reducer migration phenomena. International Journal of Refractory Metals and Hard Materials, 2010, 28, 601-604.	3.8	20
65	Comparative study of combustion laws for Mo–Si–N and W–Si–N ternary systems. Journal of Alloys and Compounds, 2008, 454, 394-399.	5. 5	7