Klaas Enno Stephan

List of Publications by Citations

Source: https://exaly.com/author-pdf/6508521/klaas-enno-stephan-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

225 papers 26,497 citations

81 h-index 161 g-index

258 ext. papers

31,615 ext. citations

6.9 avg, IF

7.15 L-index

#	Paper	IF	Citations
225	A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. <i>NeuroImage</i> , 2005 , 25, 1325-35	7.9	3115
224	Empathic neural responses are modulated by the perceived fairness of others. <i>Nature</i> , 2006 , 439, 466-9	50.4	1233
223	Bayesian model selection for group studies. <i>NeuroImage</i> , 2009 , 46, 1004-17	7.9	972
222	Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. <i>Schizophrenia Bulletin</i> , 2009 , 35, 509-27	1.3	869
221	The mismatch negativity: a review of underlying mechanisms. Clinical Neurophysiology, 2009, 120, 453-6	34.3	802
220	The anatomical basis of functional localization in the cortex. <i>Nature Reviews Neuroscience</i> , 2002 , 3, 606-	16 3.5	787
219	Comparing dynamic causal models. <i>NeuroImage</i> , 2004 , 22, 1157-72	7.9	709
218	Synaptic plasticity and dysconnection in schizophrenia. <i>Biological Psychiatry</i> , 2006 , 59, 929-39	7.9	647
217	Ten simple rules for dynamic causal modeling. <i>NeuroImage</i> , 2010 , 49, 3099-109	7.9	571
216	Comparing families of dynamic causal models. <i>PLoS Computational Biology</i> , 2010 , 6, e1000709	5	503
215	The computational anatomy of psychosis. Frontiers in Psychiatry, 2013, 4, 47	5	423
214	The Balanced Accuracy and Its Posterior Distribution 2010,		422
213	Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. <i>Journal of Neuroscience</i> , 2006 , 26, 9503-11	6.6	402
212	Free-energy and the brain. <i>Synth Be</i> , 2007 , 159, 417-458	0.8	370
211	Comparing hemodynamic models with DCM. <i>NeuroImage</i> , 2007 , 38, 387-401	7.9	346
210	Bayesian model selection for group studies - revisited. <i>NeuroImage</i> , 2014 , 84, 971-85	7.9	321
209	A bayesian foundation for individual learning under uncertainty. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 39	3.3	311

208	Nonlinear dynamic causal models for fMRI. <i>NeuroImage</i> , 2008 , 42, 649-62	7.9	311
207	Interoception and Mental Health: A Roadmap. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 501-513	3.4	283
206	The functional anatomy of the MMN: a DCM study of the roving paradigm. <i>NeuroImage</i> , 2008 , 42, 936-4	14 7.9	277
205	Computational psychiatry: the brain as a phantastic organ. <i>Lancet Psychiatry,the</i> , 2014 , 1, 148-58	23.3	269
204	Lateralized cognitive processes and lateralized task control in the human brain. <i>Science</i> , 2003 , 301, 384	-633.3	265
203	The dysconnection hypothesis (2016). Schizophrenia Research, 2016, 176, 83-94	3.6	264
202	Bayesian model reduction and empirical Bayes for group (DCM) studies. <i>NeuroImage</i> , 2016 , 128, 413-43	8 1 7.9	253
201	Striatal prediction error modulates cortical coupling. <i>Journal of Neuroscience</i> , 2010 , 30, 3210-9	6.6	242
200	Attention to action in Parkinson's disease: impaired effective connectivity among frontal cortical regions. <i>Brain</i> , 2002 , 125, 276-89	11.2	242
199	Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. <i>Journal of Neuroscience</i> , 2006 , 26, 11501-9	6.6	225
198	A dual role for prediction error in associative learning. Cerebral Cortex, 2009, 19, 1175-85	5.1	224
197	Network discovery with DCM. <i>NeuroImage</i> , 2011 , 56, 1202-21	7.9	211
196	Dopamine, affordance and active inference. PLoS Computational Biology, 2012, 8, e1002327	5	208
195	Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. <i>Neuron</i> , 2013 , 80, 519-30	13.9	200
194	Task and content modulate amygdala-hippocampal connectivity in emotional retrieval. <i>Neuron</i> , 2006 , 49, 631-8	13.9	197
193	Computational analysis of functional connectivity between areas of primate cerebral cortex. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2000 , 355, 111-26	5.8	196
192	Do patients with schizophrenia exhibit aberrant salience?. <i>Psychological Medicine</i> , 2009 , 39, 199-209	6.9	195
191	Free energy, precision and learning: the role of cholinergic neuromodulation. <i>Journal of Neuroscience</i> , 2013 , 33, 8227-36	6.6	183

190	Dynamic causal models of neural system dynamics:current state and future extensions. <i>Journal of Biosciences</i> , 2007 , 32, 129-44	2.3	169
189	Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression. <i>Frontiers in Human Neuroscience</i> , 2016 , 10, 550	3.3	169
188	Parieto-frontal connectivity during visually guided grasping. <i>Journal of Neuroscience</i> , 2007 , 27, 11877-8	76.6	167
187	Uncertainty in perception and the Hierarchical Gaussian Filter. <i>Frontiers in Human Neuroscience</i> , 2014 , 8, 825	3.3	165
186	Mixed-effects and fMRI studies. <i>NeuroImage</i> , 2005 , 24, 244-52	7.9	164
185	Dynamic causal modelling of evoked potentials: a reproducibility study. <i>NeuroImage</i> , 2007 , 36, 571-80	7.9	162
184	Computational approaches to psychiatry. Current Opinion in Neurobiology, 2014, 25, 85-92	7.6	159
183	Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. <i>NeuroImage</i> , 2002 , 15, 797-809	7.9	154
182	A Bayesian perspective on magnitude estimation. <i>Trends in Cognitive Sciences</i> , 2015 , 19, 285-93	14	150
181	A neural mass model of spectral responses in electrophysiology. <i>NeuroImage</i> , 2007 , 37, 706-20	7.9	147
180	Decoding the perception of pain from fMRI using multivariate pattern analysis. <i>NeuroImage</i> , 2012 , 63, 1162-70	7.9	146
179	Generalised filtering and stochastic DCM for fMRI. <i>NeuroImage</i> , 2011 , 58, 442-57	7.9	140
178	Dynamic causal models of steady-state responses. <i>NeuroImage</i> , 2009 , 44, 796-811	7.9	136
177	The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data. <i>Journal of Neuroscience Methods</i> , 2017 , 276, 56-72	3	135
176	Repetition suppression and plasticity in the human brain. <i>NeuroImage</i> , 2009 , 48, 269-79	7.9	135
175	Spatial attention, precision, and Bayesian inference: a study of saccadic response speed. <i>Cerebral Cortex</i> , 2014 , 24, 1436-50	5.1	127
174	Modulation of pain processing in hyperalgesia by cognitive demand. <i>NeuroImage</i> , 2005 , 27, 59-69	7.9	127
173	Interhemispheric integration of visual processing during task-driven lateralization. <i>Journal of Neuroscience</i> , 2007 , 27, 3512-22	6.6	125

(2005-2007)

172	Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents. <i>Neurolmage</i> , 2007 , 35, 283-91	7.9	125
171	On the role of general system theory for functional neuroimaging. <i>Journal of Anatomy</i> , 2004 , 205, 443-	70 .9	125
170	Changes of cortico-striatal effective connectivity during visuomotor learning. <i>Cerebral Cortex</i> , 2002 , 12, 1040-7	5.1	125
169	Dissecting psychiatric spectrum disorders by generative embedding. <i>NeuroImage: Clinical</i> , 2014 , 4, 98-1	1 § .3	123
168	Stratified medicine for mental disorders. European Neuropsychopharmacology, 2014, 24, 5-50	1.2	121
167	Translational Perspectives for Computational Neuroimaging. <i>Neuron</i> , 2015 , 87, 716-32	13.9	117
166	Tractography-based priors for dynamic causal models. <i>NeuroImage</i> , 2009 , 47, 1628-38	7.9	115
165	Generative embedding for model-based classification of fMRI data. <i>PLoS Computational Biology</i> , 2011 , 7, e1002079	5	112
164	Analyzing effective connectivity with functional magnetic resonance imaging. <i>Wiley Interdisciplinary Reviews: Cognitive Science</i> , 2010 , 1, 446-459	4.5	112
163	Bayesian estimation of synaptic physiology from the spectral responses of neural masses. <i>Neurolmage</i> , 2008 , 42, 272-84	7.9	108
162	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. <i>Lancet Psychiatry,the</i> , 2016 , 3, 77-83	23.3	107
161	The cortical dynamics of intelligible speech. <i>Journal of Neuroscience</i> , 2008 , 28, 13209-15	6.6	106
160	An in vivo assay of synaptic function mediating human cognition. <i>Current Biology</i> , 2011 , 21, 1320-5	6.3	105
159	Observing the observer (I): meta-bayesian models of learning and decision-making. <i>PLoS ONE</i> , 2010 , 5, e15554	3.7	104
158	Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. <i>Human Brain Mapping</i> , 2009 , 30, 392-402	5.9	102
157	The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour. <i>Cerebral Cortex</i> , 2005 , 15, 85-95	5.1	98
156	Inferring on the intentions of others by hierarchical Bayesian learning. <i>PLoS Computational Biology</i> , 2014 , 10, e1003810	5	97
155	Yearning to yawn: the neural basis of contagious yawning. <i>NeuroImage</i> , 2005 , 24, 1260-4	7.9	96

154	Computational neuroimaging strategies for single patient predictions. <i>NeuroImage</i> , 2017 , 145, 180-199	7.9	95
153	Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis. <i>Biological Psychiatry</i> , 2017 , 82, 421-430	7.9	92
152	Modelling trial-by-trial changes in the mismatch negativity. PLoS Computational Biology, 2013, 9, e1002	9ჭ1	90
151	Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2019 , 90, 642-651	5.5	89
150	A hemodynamic model for layered BOLD signals. <i>NeuroImage</i> , 2016 , 125, 556-570	7.9	88
149	Hierarchical processing of auditory objects in humans. <i>PLoS Computational Biology</i> , 2007 , 3, e100	5	86
148	Nicotinic modulation of human auditory sensory memory: Evidence from mismatch negativity potentials. <i>International Journal of Psychophysiology</i> , 2006 , 59, 49-58	2.9	86
147	Neural coding of tactile decisions in the human prefrontal cortex. <i>Journal of Neuroscience</i> , 2006 , 26, 12	5 % 66	01 85
146	DCM for complex-valued data: cross-spectra, coherence and phase-delays. <i>NeuroImage</i> , 2012 , 59, 439-5	5 5 7.9	81
145	Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. <i>Journal of Neuroscience</i> , 2006 , 26, 1945-52	6.6	81
144	A short history of causal modeling of fMRI data. <i>NeuroImage</i> , 2012 , 62, 856-63	7.9	80
143	Modeling ketamine effects on synaptic plasticity during the mismatch negativity. <i>Cerebral Cortex</i> , 2013 , 23, 2394-406	5.1	80
142	Biophysical models of fMRI responses. <i>Current Opinion in Neurobiology</i> , 2004 , 14, 629-35	7.6	80
141	Effective connectivity during processing of facial affect: evidence for multiple parallel pathways. Journal of Neuroscience, 2011 , 31, 14378-85	6.6	79
140	Stochastic dynamic causal modelling of fMRI data: should we care about neural noise?. <i>NeuroImage</i> , 2012 , 62, 464-81	7.9	78
139	Forward and backward connections in the brain: a DCM study of functional asymmetries. <i>Neurolmage</i> , 2009 , 45, 453-62	7.9	78
138	Contextual novelty changes reward representations in the striatum. <i>Journal of Neuroscience</i> , 2010 , 30, 1721-6	6.6	77
137	Network participation indices: characterizing component roles for information processing in neural networks. <i>Neural Networks</i> , 2003 , 16, 1261-75	9.1	77

Mismatch negativity encoding of prediction errors predicts S-ketamine-induced cognitive impairments. <i>Neuropsychopharmacology</i> , 2012 , 37, 865-75	8.7	74	
Brain connectivity abnormalities predating the onset of psychosis: correlation with the effect of medication. <i>JAMA Psychiatry</i> , 2013 , 70, 903-12	14.5	72	
Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2000 , 355, 37-54	5.8	72	
Mechanisms of hemispheric specialization: insights from analyses of connectivity. <i>Neuropsychologia</i> , 2007 , 45, 209-28	3.2	71	
Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. <i>Neurolmage</i> , 2010 , 49, 947-55	7.9	70	
Extra-classical receptive field effects measured in striate cortex with fMRI. <i>NeuroImage</i> , 2007 , 34, 1199	-2,08	70	
Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention. <i>Journal of Neuroscience</i> , 2015 , 35, 11532-42	6.6	68	
A neurocomputational model of the mismatch negativity. <i>PLoS Computational Biology</i> , 2013 , 9, e10032	88	68	
Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. <i>PLoS ONE</i> , 2011 , 6, e22790	3.7	68	
Regression DCM for fMRI. <i>Neurolmage</i> , 2017 , 155, 406-421	7.9	66	
Amphetamine sensitization alters reward processing in the human striatum and amygdala. <i>PLoS ONE</i> , 2014 , 9, e93955	3.7	65	
Focus of attention modulates the heartbeat evoked potential. <i>NeuroImage</i> , 2019 , 186, 595-606	7.9	65	
Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. <i>Nature Communications</i> , 2014 , 5, 5547	17.4	64	
Biophysical network models and the human connectome. <i>NeuroImage</i> , 2013 , 80, 330-8	7.9	62	
Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. <i>Neuropsychopharmacology</i> , 2015 , 40, 268-77	8.7	61	
Neurofeedback-mediated self-regulation of the dopaminergic midbrain. <i>NeuroImage</i> , 2013 , 83, 817-25	7.9	59	
An Obesity-Predisposing Variant of the FTO Gene Regulates D2R-Dependent Reward Learning. <i>Journal of Neuroscience</i> , 2015 , 35, 12584-92	6.6	58	
Hierarchical prediction errors in midbrain and septum during social learning. <i>Social Cognitive and Affective Neuroscience</i> , 2017 , 12, 618-634	4	58	
	Impairments. Neuropsychopharmacology, 2012, 37, 865-75 Brain connectivity abnormalities predating the onset of psychosis: correlation with the effect of medication. JAMA Psychiatry, 2013, 70, 903-12 Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 37-54 Mechanisms of hemispheric specialization: insights from analyses of connectivity. Neuropsychologia, 2007, 45, 209-28 Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. NeuroImage, 2010, 49, 947-55 Extra-classical receptive field effects measured in striate cortex with fMRI. NeuroImage, 2007, 34, 1199 Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention. Journal of Neuroscience, 2015, 35, 11532-42 A neurocomputational model of the mismatch negativity. PLoS Computational Biology, 2013, 9, e10032 Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS ONE, 2011, 6, e22790 Regression DCM for fMRI. NeuroImage, 2017, 155, 406-421 Amphetamine sensitization alters reward processing in the human striatum and amygdala. PLoS ONE, 2014, 9, e93955 Focus of attention modulates the heartbeat evoked potential. NeuroImage, 2019, 186, 595-606 Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nature Communications, 2014, 5, 5547 Biophysical network models and the human connectome. NeuroImage, 2013, 80, 330-8 Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology, 2015, 40, 268-77 Neurofeedback-mediated self-regulation of the dopaminergic midbrain. NeuroImage, 2013, 83, 817-25 An Obesity-Predisposing Variant of the FTO Gene Regulates D2R-Dependent Reward Learning. Journal of Neuroscience, 2015, 35, 12584-92	Impairments. Neuropsychopharmacology, 2012, 37, 865-75 Brain connectivity abnormalities predating the onset of psychosis: correlation with the effect of medication. JAMA Psychiatry, 2013, 70, 903-12 Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 37-54 Mechanisms of hemispheric specialization: insights from analyses of connectivity. Neuropsychologia, 2007, 45, 209-28 Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. Neuroimage, 2010, 49, 947-55 Extra-classical receptive field effects measured in striate cortex with fMRI. NeuroImage, 2007, 34, 1199-209 Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention. Journal of Neuroscience, 2015, 35, 11532-42 A neurocomputational model of the mismatch negativity. PLoS Computational Biology, 2013, 9, e100328\$ Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS ONE, 2011, 6, e22790 Amphetamine sensitization alters reward processing in the human striatum and amygdala. PLoS ONE, 2014, 9, e93955 Focus of attention modulates the heartbeat evoked potential. NeuroImage, 2019, 186, 595-606 7.9 Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nature Communications, 2014, 5, 5547 Biophysical network models and the human connectome. NeuroImage, 2013, 80, 330-8 7.9 Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology, 2015, 40, 268-77 Neurofeedback-mediated self-regulation of the dopaminergic midbrain. NeuroImage, 2013, 83, 817-25 An Obesity-Predisposing Variant of the FTO Gene Regulates D2R-Dependent Reward Learning. 666 Hierarchical prediction errors in midbrain and septum during social learning. Social Cognitive and	impairments. Neuropsychopharmacology, 2012, 37, 865-75 Brain connectivity abnormalities predating the onset of psychosis: correlation with the effect of medication. JAMA Psychiatry, 2013, 70, 903-12 Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 58 72 325, 37-54 Mechanisms of hemispheric specialization: insights from analyses of connectivity. Neuropsychologia 32 Cingulate activity and fronto-temporal connectivity in people with prodromal signs of psychosis. NeuroImage, 2010, 49, 947-55 Extra-classical receptive field effects measured in striate cortex with fMRI. NeuroImage, 2007, 34, 1199-208 Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention. Journal of Neuroscience, 2015, 35, 11532-42 A neurocomputational model of the mismatch negativity. PLoS Computational Biology, 2013, 9, e1003288 Bynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS ONE, 2011, 6, e22790 Regression DCM for fMRI. NeuroImage, 2017, 155, 406-421 Amphetamine sensitization alters reward processing in the human striatum and amygdala. PLoS ONE, 2014, 9, e93955 Focus of attention modulates the heartbeat evoked potential. NeuroImage, 2019, 186, 595-606 7.9 65 Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nature Communications, 2014, 5, 5547 Biophysical network models and the human connectome. NeuroImage, 2013, 80, 330-8 7.9 61 Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychapharmacology, 2015, 40, 268-77 Neurofeedback-mediated self-regulation of the dopaminergic midbrain. NeuroImage, 2013, 83, 817-25 Poumal of Neuroscience, 2015, 35, 12584-92 Hierarthical prediction errors in midbrain and septum during social learning. Social Cognitive and

118	Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. <i>Journal of Neuroscience</i> , 2006 , 26, 9629-38	6.6	58
117	Pharmacological Fingerprints of Contextual Uncertainty. <i>PLoS Biology</i> , 2016 , 14, e1002575	9.7	55
116	Consistent spectral predictors for dynamic causal models of steady-state responses. <i>NeuroImage</i> , 2011 , 55, 1694-708	7.9	52
115	On nodes and modes in resting state fMRI. <i>NeuroImage</i> , 2014 , 99, 533-47	7.9	50
114	Multi-subject analyses with dynamic causal modeling. <i>NeuroImage</i> , 2010 , 49, 3065-74	7.9	47
113	Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?. <i>Frontiers in Psychiatry</i> , 2016 , 7, 107	5	47
112	Mechanisms of hemispheric lateralization: Asymmetric interhemispheric recruitment in the face perception network. <i>NeuroImage</i> , 2016 , 124, 977-988	7.9	45
111	A generative model of whole-brain effective connectivity. <i>NeuroImage</i> , 2018 , 179, 505-529	7.9	45
110	Visual Mismatch and Predictive Coding: A Computational Single-Trial ERP Study. <i>Journal of Neuroscience</i> , 2018 , 38, 4020-4030	6.6	44
109	Investigating the functional role of callosal connections with dynamic causal models. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1064, 16-36	6.5	43
108	Fronto-temporal interactions during overt verbal initiation and suppression. <i>Journal of Cognitive Neuroscience</i> , 2008 , 20, 1656-69	3.1	40
107	In search of the hidden: an fMRI study with implications for the study of patients with autism and with acquired brain injury. <i>Neurolmage</i> , 2003 , 19, 674-83	7.9	39
106	Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. <i>Lancet Psychiatry,the</i> , 2016 , 3, 84-90	23.3	37
105	A dynamic causal model for evoked and induced responses. <i>NeuroImage</i> , 2012 , 59, 340-8	7.9	37
104	Cholinergic stimulation enhances Bayesian belief updating in the deployment of spatial attention. Journal of Neuroscience, 2014 , 34, 15735-42	6.6	36
103	Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody encephalitis. <i>Brain</i> , 2018 , 141, 1691-1702	11.2	34
102	Test-retest reliability of dynamic causal modeling for fMRI. <i>NeuroImage</i> , 2015 , 117, 56-66	7.9	34
101	Adaptive and aberrant reward prediction signals in the human brain. <i>NeuroImage</i> , 2010 , 50, 657-64	7.9	34

(2013-2011)

10	Optimizing experimental design for comparing models of brain function. <i>PLoS Computational Biology</i> , 2011 , 7, e1002280	5	34
99	Observing the observer (II): deciding when to decide. <i>PLoS ONE</i> , 2010 , 5, e15555	3.7	34
98	Embodied neurology: an integrative framework for neurological disorders. <i>Brain</i> , 2016 , 139, 1855-61	11.2	32
97	Mismatch responses in the awake rat: evidence from epidural recordings of auditory cortical fields. <i>PLoS ONE</i> , 2013 , 8, e63203	3.7	31
96	Changes in auditory feedback connections determine the severity of speech processing deficits after stroke. <i>Journal of Neuroscience</i> , 2012 , 32, 4260-70	6.6	31
95	Matched-filter acquisition for BOLD fMRI. <i>NeuroImage</i> , 2014 , 100, 145-60	7.9	29
94	The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson's disease. <i>Brain</i> , 2020 , 143, 2235-2254	11.2	28
93	Variational Bayesian mixed-effects inference for classification studies. <i>NeuroImage</i> , 2013 , 76, 345-61	7.9	28
92	Neuroticism and conscientiousness respectively constrain and facilitate short-term plasticity within the working memory neural network. <i>Human Brain Mapping</i> , 2015 , 36, 4158-63	5.9	27
91	The Binormal Assumption on Precision-Recall Curves 2010 ,		27
90	Integrated Bayesian models of learning and decision making for saccadic eye movements. <i>Neural Networks</i> , 2008 , 21, 1247-60	9.1	27
89			
- 09	Analysis and correction of field fluctuations in fMRI data using field monitoring. <i>NeuroImage</i> , 2017 , 154, 92-105	7.9	26
88	154, 92-105	7·9 3·9	26 26
	Approaches to the cortical analysis of auditory objects. <i>Hearing Research</i> , 2007 , 229, 46-53		
88	Approaches to the cortical analysis of auditory objects. <i>Hearing Research</i> , 2007 , 229, 46-53 mpdcm: A toolbox for massively parallel dynamic causal modeling. <i>Journal of Neuroscience Methods</i> , 2016 , 257, 7-16 Visuospatial attention: how to measure effects of infrequent, upattended events in a blocked	3.9	26
88	Approaches to the cortical analysis of auditory objects. <i>Hearing Research</i> , 2007 , 229, 46-53 mpdcm: A toolbox for massively parallel dynamic causal modeling. <i>Journal of Neuroscience Methods</i> , 2016 , 257, 7-16 Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design. <i>NeuroImage</i> , 2004 , 23, 1370-81	3.9	26
88 87 86	Approaches to the cortical analysis of auditory objects. <i>Hearing Research</i> , 2007 , 229, 46-53 mpdcm: A toolbox for massively parallel dynamic causal modeling. <i>Journal of Neuroscience Methods</i> , 2016 , 257, 7-16 Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design. <i>NeuroImage</i> , 2004 , 23, 1370-81 The history of CoCoMac. <i>NeuroImage</i> , 2013 , 80, 46-52 The brain's hemodynamic response function rapidly changes under acute psychosocial stress in	3.9 3 7.9	262525

82	The structural connectivity of discrete networks underlies impulsivity and gambling in Parkinson's disease. <i>Brain</i> , 2019 , 142, 3917-3935	11.2	22
81	Model-based feature construction for multivariate decoding. <i>NeuroImage</i> , 2011 , 56, 601-15	7.9	22
80	Functional magnetic resonance imaging investigation of the amphetamine sensitization model of schizophrenia in healthy male volunteers. <i>Archives of General Psychiatry</i> , 2011 , 68, 545-54		22
79	Computational Mechanisms of Effort and Reward Decisions in Patients With Depression and Their Association With Relapse After Antidepressant Discontinuation. <i>JAMA Psychiatry</i> , 2020 , 77, 513-522	14.5	21
78	Rapid anatomical brain imaging using spiral acquisition and an expanded signal model. <i>NeuroImage</i> , 2018 , 168, 88-100	7.9	21
77	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. <i>Biological Psychiatry</i> , 2020 , 88, e5-e10	7.9	19
76	Changing meaning causes coupling changes within higher levels of the cortical hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11765-70	11.5	19
75	Predicting individual clinical trajectories of depression with generative embedding. <i>NeuroImage: Clinical</i> , 2020 , 26, 102213	5.3	18
74	Connectional characteristics of areas in Walker's map of primate prefrontal cortex. <i>Neurocomputing</i> , 2001 , 38-40, 741-746	5.4	18
73	Generative models for clinical applications in computational psychiatry. <i>Wiley Interdisciplinary Reviews: Cognitive Science</i> , 2018 , 9, e1460	4.5	17
72	Context-dependent interactions of left posterior inferior frontal gyrus in a local visual search task unrelated to language. <i>Cognitive Neuropsychology</i> , 2005 , 22, 292-305	2.3	17
71	A hierarchical model for integrating unsupervised generative embedding and empirical Bayes. <i>Journal of Neuroscience Methods</i> , 2016 , 269, 6-20	3	17
70	Modulation of midbrain neurocircuitry by intranasal insulin. <i>NeuroImage</i> , 2019 , 194, 120-127	7.9	16
69	Ketamine Affects Prediction Errors about Statistical Regularities: A Computational Single-Trial Analysis of the Mismatch Negativity. <i>Journal of Neuroscience</i> , 2020 , 40, 5658-5668	6.6	15
68	The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades. <i>PLoS Computational Biology</i> , 2017 , 13, e1005692	5	15
67	A model-based analysis of impulsivity using a slot-machine gambling paradigm. <i>Frontiers in Human Neuroscience</i> , 2014 , 8, 428	3.3	15
66	A Role for Brocall Area Beyond Language Processing: Evidence from Neuropsychology and fMRI 2006 , 254-268		15
65	Volatility Estimates Increase Choice Switching and Relate to Prefrontal Activity in Schizophrenia. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2020 , 5, 173-183	3.4	15

(2020-2020)

64	Atypical processing of uncertainty in individuals at risk for psychosis. <i>NeuroImage: Clinical</i> , 2020 , 26, 102	2339	14
63	Surprise beyond prediction error. Human Brain Mapping, 2014, 35, 4805-14	5.9	14
62	Computational models of eye movements and their application to schizophrenia. <i>Current Opinion in Behavioral Sciences</i> , 2016 , 11, 21-29	4	14
61	Models of neuromodulation for computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science, 2017 , 8, e1420	4.5	13
60	Models of functional neuroimaging data. Current Medical Imaging, 2006, 2, 15-34	1.2	13
59	TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. <i>Frontiers in Psychiatry</i> , 2021 , 12, 680811	5	13
58	Subjective estimates of uncertainty during gambling and impulsivity after subthalamic deep brain stimulation for Parkinson's disease. <i>Scientific Reports</i> , 2019 , 9, 14795	4.9	12
57	Learning What to See in a Changing World. Frontiers in Human Neuroscience, 2016 , 10, 263	3.3	12
56	Inflexible social inference in individuals with subclinical persecutory delusional tendencies. <i>Schizophrenia Research</i> , 2020 , 215, 344-351	3.6	12
55	Regression dynamic causal modeling for resting-state fMRI. Human Brain Mapping, 2021, 42, 2159-2180	5.9	12
54	Inversion of hierarchical Bayesian models using Gaussian processes. <i>NeuroImage</i> , 2015 , 118, 133-45	7.9	11
53	Interoception of breathing and its relationship with anxiety. Neuron, 2021,	13.9	11
52	Episodic Tags Enhance Striatal Valuation Signals during Temporal Discounting in pathological Gamblers. <i>ENeuro</i> , 2017 , 4,	3.9	10
51	Feature-specific prediction errors for visual mismatch. <i>Neurolmage</i> , 2019 , 196, 142-151	7.9	8
50	Bayesian inference, dysconnectivity and neuromodulation in schizophrenia. <i>Brain</i> , 2016 , 139, 1874-6	11.2	8
49	Amphetamine sensitisation and memory in healthy human volunteers: a functional magnetic resonance imaging study. <i>Journal of Psychopharmacology</i> , 2014 , 28, 857-65	4.6	8
48	Temporal activation patterns of lateralized cognitive and task control processes in the human brain. <i>Brain Research</i> , 2008 , 1205, 81-90	3.7	8
	Hierarchical Bayesian models of social inference for probing persecutory delusional ideation.		8

46	Organization of primate amygdalo-prefrontal projections. <i>Neurocomputing</i> , 2001 , 38-40, 1135-1140	5.4	7
45	Models of Effective Connectivity in Neural Systems. <i>Understanding Complex Systems</i> , 2007 , 303-327	0.4	7
44	Timing of repetition suppression of event-related potentials to unattended objects. <i>European Journal of Neuroscience</i> , 2020 , 52, 4432-4441	3.5	7
43	Variational Bayesian inversion for hierarchical unsupervised generative embedding (HUGE). <i>Neurolmage</i> , 2018 , 179, 604-619	7.9	7
42	The Filter Detection Task for measurement of breathing-related interoception and metacognition. <i>Biological Psychology</i> , 2021 , 165, 108185	3.2	7
41	One cortex Imany maps: An introduction to coordinate-independent mapping by Objective Relational Transformation (ORT). <i>Neurocomputing</i> , 1999 , 26-27, 1049-1054	5.4	6
40	Effects of hunger, satiety and oral glucose on effective connectivity between hypothalamus and insular cortex. <i>NeuroImage</i> , 2020 , 217, 116931	7.9	5
39	Remote, Automated, and MRI-Compatible Administration of Interoceptive Inspiratory Resistive Loading. <i>Frontiers in Human Neuroscience</i> , 2020 , 14, 161	3.3	5
38	The Filter Detection Task for measurement of breathing-related interoception and metacognition		5
37	Ketamine Affects Prediction Errors about Statistical Regularities: A Computational Single-Trial Analysis of the Mismatch Negativity		5
36	Inhibition failures and late errors in the antisaccade task: influence of cue delay. <i>Journal of Neurophysiology</i> , 2018 , 120, 3001-3016	3.2	5
35	Switch costs in inhibitory control and voluntary behaviour: A computational study of the antisaccade task. <i>European Journal of Neuroscience</i> , 2019 , 50, 3205-3220	3.5	4
34	Hat Computational Psychiatry Relevanz fildie klinische Praxis der Psychiatrie?. <i>Zeitschrift Fur Psychiatrie, Psychologie Und Psychotherapie</i> , 2017 , 65, 9-19	0.3	4
33	Regression dynamic causal modeling for resting-state fMRI		4
32	Markov chain Monte Carlo methods for hierarchical clustering of dynamic causal models. <i>Human Brain Mapping</i> , 2021 , 42, 2973-2989	5.9	4
31	Whole-brain estimates of directed connectivity for human connectomics. <i>NeuroImage</i> , 2021 , 225, 1174	19 †7.9	4
30	Inference on homeostatic belief precision. <i>Biological Psychology</i> , 2021 , 165, 108190	3.2	4
29	Dynamic Causal Modeling and Its Application to Psychiatric Disorders 2018 , 117-144		3

28	The structural basis of information transfer from medial temporal lobe to prefrontal cortex in the macaque monkey. <i>Neurocomputing</i> , 2002 , 44-46, 753-758	5.4	3
27	Advances in spiral fMRI: A high-resolution study with single-shot acquisition. <i>NeuroImage</i> , 2021 , 246, 118738	7.9	3
26	Advances in Spiral fMRI: A High-resolution Study with Single-shot Acquisition		3
25	Computational Dissociation of Dopaminergic and Cholinergic Effects on Action Selection and Inhibitory Control. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2020 , 5, 364-372	3.4	3
24	Interoception of breathing and its relationship with anxiety		3
23	A Hilbert-based method for processing respiratory timeseries. <i>NeuroImage</i> , 2021 , 230, 117787	7.9	3
22	Bayesian inference and hallucinations in schizophrenia. <i>Brain</i> , 2019 , 142, 2178-2181	11.2	3
21	Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning. <i>NeuroImage</i> , 2021 , 226, 117590	7.9	3
20	Analyzing Functional and Effective Connectivity with fMRI 2010 , 251-267		2
19	Whole-brain estimates of directed connectivity for human connectomics		2
18	Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses. <i>Neurolmage</i> , 2021 , 237, 118096	7.9	2
17	An Introduction to CoCoMac-Online 2003 , 155-169		2
16	Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia <i>Cell Reports</i> , 2021 , 37, 110161	10.6	2
15	Hemodynamic modeling of aspirin effects on BOLD responses at 7T		1
14	Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses		1
13	A Hilbert-based method for processing respiratory timeseries		1
12	An introduction to thermodynamic integration and application to dynamic causal models		1
11	Volatility estimates increase choice switching and relate to prefrontal activity in schizophrenia		1

10	Switch costs in inhibitory control and voluntary behavior: A computational study of the antisaccade tas	k	1
9	Focus of attention modulates the heartbeat evoked potential		1
8	Test-retest reliability of regression dynamic causal modeling <i>Network Neuroscience</i> , 2022 , 6, 135-160	5.6	О
7	Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities. <i>Neurolmage</i> , 2021 , 245, 118662	7.9	O
6	Technical note: A fast and robust integrator of delay differential equations in DCM for electrophysiological data. <i>NeuroImage</i> , 2021 , 244, 118567	7.9	0
5	Inferring Effective Connectivity from fMRI Data. <i>Biological Magnetic Resonance</i> , 2015 , 365-386	0.5	
4	Modelling the influence of thalamo-cortical projections on prefrontal activity. <i>Neurocomputing</i> , 2002 , 44-46, 869-873	5.4	
3	Hemodynamic modeling of long-term aspirin effects on blood oxygenated level dependent responses at 7 Tesla in patients at cardiovascular risk. <i>European Journal of Neuroscience</i> , 2021 , 53, 1262	-∮2⁄78	
2	An introduction to thermodynamic integration and application to dynamic causal models <i>Cognitive Neurodynamics</i> , 2022 , 16, 1-15	4.2	
1	Advances in spiral fMRI: A high-resolution dataset <i>Data in Brief</i> , 2022 , 42, 108050	1.2	