Dhanya Puthusseri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6508203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy and Environmental Science, 2014, 7, 728-735.	30.8	348
2	High and Reversible Lithium Ion Storage in Selfâ€Exfoliated Triazoleâ€Triformyl Phloroglucinolâ€Based Covalent Organic Nanosheets. Advanced Energy Materials, 2018, 8, 1702170.	19.5	174
3	Enhanced Capacitance Retention in a Supercapacitor Made of Carbon from Sugarcane Bagasse by Hydrothermal Pretreatment. Energy & Fuels, 2014, 28, 4233-4240.	5.1	161
4	MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale, 2014, 6, 4387.	5.6	159
5	Hard Carbons for Sodiumâ€lon Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. ChemSusChem, 2018, 11, 506-526.	6.8	158
6	Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta, 2014, 130, 766-770.	5.2	74
7	From Waste Paper Basket to Solid State and Liâ€HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small, 2014, 10, 4395-4402.	10.0	73
8	Conversion-type Anode Materials for Alkali-Ion Batteries: State of the Art and Possible Research Directions. ACS Omega, 2018, 3, 4591-4601.	3.5	67
9	Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18634-18642.	10.3	64
10	Nutty Carbon: Morphology Replicating Hard Carbon from Walnut Shell for Na Ion Battery Anode. ACS Omega, 2017, 2, 3601-3609.	3.5	56
11	Synthesis of an efficient heteroatom-doped carbon electro-catalyst for oxygen reduction reaction by pyrolysis of protein-rich pulse flour cooked with SiO2 nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 4251.	2.8	45
12	Probing the Thermal Safety of Li Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 120513.	2.9	31
13	All-solid-state Li-metal batteries: role of blending PTFE with PEO and LiTFSI salt as a composite electrolyte with enhanced thermal stability. Sustainable Energy and Fuels, 2020, 4, 2229-2235.	4.9	22
14	Hausmannite Manganese oxide cathodes for supercapacitors: Surface Wettability and Electrochemical Properties. Electrochimica Acta, 2017, 231, 460-467.	5.2	20
15	F-Doped carbon nano-onion films as scaffold for highly efficient and stable Li metal anodes: a novel laser direct-write process. Nanoscale, 2018, 10, 7630-7638.	5.6	20
16	High capacity, power density and cycling stability of silicon Li-ion battery anodes with a few layer black phosphorus additive. Sustainable Energy and Fuels, 2019, 3, 245-250.	4.9	18
17	High surface area porous carbon for ultracapacitor application by pyrolysis of polystyrene containing pendant carboxylic acid groups prepared via click chemistry. Materials Today Communications, 2015, 4, 166-175.	1.9	14
18	Recent Advances in Understanding the Formation and Mitigation of Dendrites in Lithium Metal Batteries. Energy & Fuels, 2021, 35, 9187-9208.	5.1	14

Dhanya Puthusseri

#	Article	IF	CITATIONS
19	High Na ⁺ Mobility in rGO Wrapped High Aspect Ratio 1D SbSe Nano Structure Renders Better Electrochemical Na ⁺ Battery Performance. ChemPhysChem, 2020, 21, 814-820.	2.1	13
20	Aligned NiP2/CoP2 nanoneedle arrays obtained over carbon fiber paper by selective temperature control for efficient HER electrocatalysis. Materials Letters, 2020, 278, 128456.	2.6	12
21	Layered NaxCoO2-based cathodes for advanced Na-ion batteries: review on challenges and advancements. Ionics, 2021, 27, 4549-4572.	2.4	11
22	3D Interconnected Porous Graphene Sheets Loaded with Cobalt Oxide Nanoparticles for Lithiumâ€ŀon Battery Anodes. Energy Technology, 2016, 4, 816-822.	3.8	7
23	Hard Carbon and Li ₄ Ti ₅ O ₁₂ -Based Physically Mixed Anodes for Superior Li-Battery Performance with Significantly Reduced Li Content: A Case of Synergistic Materials Cooperation. ACS Omega, 2017, 2, 8818-8824.	3.5	7
24	Single-Source Alkoxide Precursor Approach to Titanium Molybdate, TiMoO5, and Its Structure, Electrochemical Properties, and Potential as an Anode Material for Alkali Metal Ion Batteries. Inorganic Chemistry, 2021, 60, 3593-3603.	4.0	4
25	Thermal Safety Analysis of Disordered Li-Rich Rock salt Li _{1.3} Mn _{0.4} Nb _{0.3} O ₂ Cathode. ACS Applied Energy Materials, 2022, 5, 516-523.	5.1	3
26	Advanced Li Metal Batteries: Thermal Safety Evaluation, Analysis and Mechanistic Elucidation. ECS Meeting Abstracts, 2019, , .	0.0	0
27	(Invited) Thermal Safety Aspects of Li-Metal Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 30-30.	0.0	0