Taras M Radchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507917/publications.pdf Version: 2024-02-01

TADAS M RADCHENKO

#	Article	IF	CITATIONS
1	Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene. Materials Today: Proceedings, 2021, 35, 523-529.	0.9	14
2	Unraveling the electronic properties of graphene with substitutional oxygen. 2D Materials, 2021, 8, 045035.	2.0	9
3	Sensitivity to strains and defects for manipulating the conductivity of graphene. Europhysics Letters, 2020, 132, 48002.	0.7	13
4	Martensitic αʺ-Fe16N2-Type Phase of Non-Stoichiometric Composition: Current Status of Research and Microscopic Statistical-Thermodynamic Model. Progress in Physics of Metals, 2020, 21, 580-618.	0.5	29
5	Straintronics in graphene: Extra large electronic band gap induced by tensile and shear strains. Journal of Applied Physics, 2019, 126, .	1.1	51
6	The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field. Optical Materials, 2019, 96, 109284.	1.7	19
7	Tuning the electron band structure of graphene for optoelectronics. , 2019, , .		2
8	Defectâ€Patternâ€Induced Fingerprints in the Electron Density of States of Strained Graphene Layers: Diffraction and Simulation Methods. Physica Status Solidi (B): Basic Research, 2019, 256, 1800406.	0.7	29
9	Effect of uniaxial stress on the electrochemical properties of graphene with point defects. Applied Surface Science, 2018, 442, 185-188.	3.1	26
10	Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene. Annals of Physics, 2018, 398, 80-93.	1.0	27
11	Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene. Springer Proceedings in Physics, 2018, , 25-41.	0.1	13
12	Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene. European Physical Journal B, 2017, 90, 1.	0.6	25
13	Effect of weak impurities on conductivity of uniaxially strained graphene. , 2017, , .		4
14	On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon, 2016, 101, 37-48.	5.4	35
15	Conductivity of epitaxial and CVD graphene with correlated line defects. Solid State Communications, 2014, 195, 88-94.	0.9	24
16	Effects of nitrogen-doping configurations with vacancies on conductivity in graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2270-2274.	0.9	49
17	Ordering kinetics of dopant atoms in graphene lattice with stoichiometric compositions of 1/3 and 1/6. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 231-238.	0.5	3
18	Influence of impurity defects on vibrational and electronic structure of graphene. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 183-187.	0.5	2

TARAS M RADCHENKO

#	Article	IF	CITATIONS
19	Effect of charged line defects on conductivity in graphene: Numerical Kubo and analytical Boltzmann approaches. Physical Review B, 2013, 87, .	1.1	37
20	Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach. Physical Review B, 2012, 86, .	1.1	76
21	Stable superstructures in a binary honeycomb-lattice gas. International Journal of Hydrogen Energy, 2011, 36, 1338-1343.	3.8	7
22	Kinetics of atomic ordering in metal-doped graphene. Solid State Sciences, 2010, 12, 204-209.	1.5	27
23	A statistical-thermodynamic analysis of stably ordered substitutional structures in graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2047-2054.	1.3	28
24	Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy. Journal of Alloys and Compounds, 2008, 452, 122-126.	2.8	26
25	Kinetics Parameters of Atomic Migration and Diffuse Scattering of Radiations within the F.C.CNi–Al Alloys. Defect and Diffusion Forum, 2008, 273-276, 520-524.	0.4	7
26	Semi-Empirical Parameterization of Interatomic Interactions and Kinetics of the Atomic Ordering in Ni-Fe-C Permalloys and Elinvars. Defect and Diffusion Forum, 2008, 280-281, 29-78.	0.4	31
27	Statistical Thermodynamics and Ordering Kinetics of D0 ₁₉ -Type Phase: Application of the Models for H.C.PTi–Al Alloy. Solid State Phenomena, 2008, 138, 283-302.	0.3	20
28	Kinetics of the Orientational Long-Range Ordering of Interstitial Hydrogen Atoms in Metals Having Hexagonal-Close Packed Structure. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 489-495.	0.1	3
29	COMMENTS CONCERNING PARAMETERS OF THE SHORT-RANGE ORDER EVOLUTION DETERMINED FROM THE DATA ON KINETICS OF A HEAT-CAPACITY RELAXATION FOR Lu–H ALLOY. , 2007, , 229-234.		4
30	The application of radiation diffuse scattering to the calculation of phase diagrams of F.C.C. substitutional alloys. Intermetallics, 2003, 11, 1319-1326.	1.8	30
31	Diffusive Relaxation of Short-Range Order Parametersr and the Time Evolution of Diffuse Radiation Scattering in Solid Solutions. Defect and Diffusion Forum, 2001, 194-199, 183-188.	0.4	4
32	Atomic-Ordering Kinetics and Diffusivities in Ni–Fe Permalloy. Defect and Diffusion Forum, 0, 273-276, 525-530.	0.4	24
33	Statistical Thermodynamics and Kinetics of Long-Range Order in Metal-Doped Graphene. Solid State Phenomena, 0, 150, 43-72.	0.3	27