
Danilo Marimpietri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650791/publications.pdf Version: 2024-02-01

DANILO MADIMUETDI

#	Article	IF	CITATIONS
1	Mini-Tablets: A Valid Strategy to Combine Efficacy and Safety in Pediatrics. Pharmaceuticals, 2022, 15, 108.	1.7	17
2	Pyrazole-Based Water-Soluble Dendrimer Nanoparticles as a Potential New Agent against Staphylococci. Biomedicines, 2022, 10, 17.	1.4	12
3	Potent and Broad-Spectrum Bactericidal Activity of a Nanotechnologically Manipulated Novel Pyrazole. Biomedicines, 2022, 10, 907.	1.4	5
4	Enhanced Antibacterial Activity of a Cationic Macromolecule by Its Complexation with a Weakly Active Pyrazole Derivative. Biomedicines, 2022, 10, 1607.	1.4	3
5	The Role of Extracellular Vesicles in the Progression of Human Neuroblastoma. International Journal of Molecular Sciences, 2021, 22, 3964.	1.8	11
6	Increased Water-Solubility and Maintained Antioxidant Power of Resveratrol by Its Encapsulation in Vitamin E TPGS Micelles: A Potential Nutritional Supplement for Chronic Liver Disease. Pharmaceutics, 2021, 13, 1128.	2.0	24
7	The Depolarization-Evoked, Ca2+-Dependent Release of Exosomes From Mouse Cortical Nerve Endings: New Insights Into Synaptic Transmission. Frontiers in Pharmacology, 2021, 12, 670158.	1.6	15
8	Bactericidal Activity of Non-Cytotoxic Cationic Nanoparticles against Clinically and Environmentally Relevant Pseudomonas spp. Isolates. Pharmaceutics, 2021, 13, 1411.	2.0	16
9	Identification of Biochemical and Molecular Markers of Early Aging in Childhood Cancer Survivors. Cancers, 2021, 13, 5214.	1.7	5
10	Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci. Pharmaceutics, 2021, 13, 1976.	2.0	8
11	Human Amnion Epithelial Cells Impair T Cell Proliferation: The Role of HLA-G and HLA-E Molecules. Cells, 2020, 9, 2123.	1.8	19
12	Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study. Cancers, 2019, 11, 1476.	1.7	43
13	Microvesicles expressing adenosinergic ectoenzymes and their potential role in modulating bone marrow infiltration by neuroblastoma cells. Oncolmmunology, 2019, 8, e1574198.	2.1	29
14	CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells, 2019, 8, 1527.	1.8	56
15	Microvesicles released from multiple myeloma cells are equipped with ectoenzymes belonging to canonical and non-canonical adenosinergic pathways and produce adenosine from ATP and NAD ⁺ . Oncolmmunology, 2018, 7, e1458809.	2.1	59
16	<i>CHL1</i> gene acts as a tumor suppressor in human neuroblastoma. Oncotarget, 2018, 9, 25903-25921.	0.8	24
17	Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes. Molecular Cancer, 2017, 16, 159.	7.9	55
18	Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB Journal, 2016, 30, 1416-1424.	0.2	63

DANILO MARIMPIETRI

#	Article	IF	CITATIONS
19	NAD+-Metabolizing Ectoenzymes in Remodeling Tumor–Host Interactions: The Human Myeloma Model. Cells, 2015, 4, 520-537.	1.8	99
20	The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma. Leukemia, 2015, 29, 958-967.	3.3	31
21	Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche. Annals of the New York Academy of Sciences, 2015, 1335, 10-22.	1.8	47
22	Generation and Characterization of Microvesicles after Daratumumab Interaction with Myeloma Cells. Blood, 2015, 126, 1849-1849.	0.6	16
23	Abstract 1149: Consistency between genomic and proteomic profiles reveals novel molecular mechanisms of fasting antitumor activity. , 2015, , .		0
24	ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death and Disease, 2014, 5, e1135-e1135.	2.7	102
25	Failure of anti tumor-derived endothelial cell immunotherapy depends on augmentation of tumor hypoxia. Oncotarget, 2014, 5, 10368-10381.	0.8	18
26	Abstract 3374: Fasting chemosensitizes tumor cells by affecting their metabolism. , 2014, , .		1
27	Enhanced anti-tumor and anti-angiogenic efficacy of a novel liposomal fenretinide on human neuroblastoma. Journal of Controlled Release, 2013, 170, 445-451.	4.8	41
28	Proteome Profiling of Neuroblastoma-Derived Exosomes Reveal the Expression of Proteins Potentially Involved in Tumor Progression. PLoS ONE, 2013, 8, e75054.	1.1	122
29	Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells. Cell Research, 2011, 21, 1470-1486.	5.7	66
30	Therapeutic Targeting of TLR9 Inhibits Cell Growth and Induces Apoptosis in Neuroblastoma. Cancer Research, 2010, 70, 9816-9826.	0.4	65
31	Chapter 12 Liposome-Mediated Therapy of Neuroblastoma. Methods in Enzymology, 2009, 465, 225-249.	0.4	13
32	The Combined Therapeutic Effects of Bortezomib and Fenretinide on Neuroblastoma Cells Involve Endoplasmic Reticulum Stress Response. Clinical Cancer Research, 2009, 15, 1199-1209.	3.2	39
33	Anti-IL-10R antibody improves the therapeutic efficacy of targeted liposomal oligonucleotides. Journal of Controlled Release, 2009, 138, 122-127.	4.8	13
34	Recent Advances in Targeted Anti-Vasculature Therapy: The Neuroblastoma Model. Current Drug Targets, 2009, 10, 1021-1027.	1.0	14
35	Abstract A130: Effects of a novel liposomal formulation of fenretinide on human neuroblastoma cell growth, apoptosis and angiogenesis. , 2009, , .		0
36	Enhanced Antitumor Efficacy of Clinical-Grade Vasculature-Targeted Liposomal Doxorubicin. Clinical Cancer Research, 2008, 14, 7320-7329.	3.2	82

DANILO MARIMPIETRI

#	Article	IF	CITATIONS
37	Drug Delivery Systems: Application of Liposomal Anti-Tumor Agents to Neuroectodermal Cancer Treatment. Tumori, 2008, 94, 246-253.	0.6	19
38	Combined Therapeutic Effects of Vinblastine and Rapamycin on Human Neuroblastoma Growth, Apoptosis, and Angiogenesis. Clinical Cancer Research, 2007, 13, 3977-3988.	3.2	77
39	Ligand-Targeted Liposomal Therapies of Neuroblastoma. Current Medicinal Chemistry, 2007, 14, 3070-3078.	1.2	28
40	Proteomic analysis of anti-angiogenic effects by a combined treatment with vinblastine and rapamycin in an endothelial cell line. Proteomics, 2006, 6, 4420-4431.	1.3	20
41	Targeting Liposomal Chemotherapy via Both Tumor Cell–Specific and Tumor Vasculature–Specific Ligands Potentiates Therapeutic Efficacy. Cancer Research, 2006, 66, 10073-10082.	0.4	215
42	Effect of Bortezomib on Human Neuroblastoma Cell Growth, Apoptosis, and Angiogenesis. Journal of the National Cancer Institute, 2006, 98, 1142-1157.	3.0	125
43	Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin. Oncogene, 2005, 24, 6785-6795.	2.6	63
44	Neuroblastoma targeting by c-myb-selective antisense oligonucleotides entrapped in anti-GD2 immunoliposome: immune cell-mediated anti-tumor activities. Cancer Letters, 2005, 228, 181-186.	3.2	29
45	Immune Cell-Mediated Antitumor Activities of GD2-Targeted Liposomal c-myb Antisense Oligonucleotides Containing CpG Motifs. Journal of the National Cancer Institute, 2004, 96, 1171-1180.	3.0	61
46	Targeted Delivery of Oncogene-Selective Antisense Oligonucleotides in Neuroectodermal Tumors: Therapeutic Implications. Annals of the New York Academy of Sciences, 2004, 1028, 90-103.	1.8	13
47	Angiogenesis in Neuroblastoma. Annals of the New York Academy of Sciences, 2004, 1028, 133-142.	1.8	62
48	Proteomic analysis of an orthotopic neuroblastoma xenograft animal model*1. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 808, 279-286.	1.2	14
49	In vitro andin vivo antitumor activity of liposomal fenretinide targeted to human neuroblastoma. International Journal of Cancer, 2003, 104, 559-567.	2.3	41
50	Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Letters, 2003, 197, 151-155.	3.2	36
51	Development of Fab′ fragments of anti-GD2 immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Letters, 2003, 197, 199-204.	3.2	41
52	Anti-GD2 monoclonal antibody immunotherapy: a promising strategy in the prevention of neuroblastoma relapse. Cancer Letters, 2003, 197, 205-209.	3.2	37
53	Fenretinide as an anti-angiogenic agent in neuroblastoma. Cancer Letters, 2003, 197, 181-184.	3.2	20
54	Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Letters, 2003, 197, 231-235.	3.2	47

#	Article	IF	CITATIONS
55	Doxorubicin-loaded Fab' fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Research, 2003, 63, 86-92.	0.4	122
56	Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clinical Cancer Research, 2003, 9, 4595-605.	3.2	53
57	Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Research, 2003, 63, 7400-9.	0.4	242
58	Inhibition of neuroblastoma-induced angiogenesis by fenretinide. International Journal of Cancer, 2001, 94, 314-321.	2.3	63
59	Sodium butyrate modulates cell cycle-related proteins in HT29 human colonic adenocarcinoma cells. Cell Proliferation, 2000, 33, 139-146.	2.4	66
60	Tissue transglutaminase is a caspase substrate during apoptosis. Cleavage causes loss of transamidating function and is a biochemical marker of caspase 3 activation. Cell Death and Differentiation, 1999, 6, 992-1001.	5.0	39
61	Biochemical characterization and membrane expression of an antigen shared by activated and neoplastic cells of neuroectodermal origin. Journal of Neuroimmunology, 1995, 57, 17-26.	1.1	4