Irina A Balova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507831/publications.pdf

Version: 2024-02-01

		394421	501196
51	920	19	28
papers	citations	h-index	g-index
57	57	57	829
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hyperbranched polymer immobilized palladium nanoparticles as an efficient and reusable catalyst for cyanation of aryl halides and reduction of nitroarenes. Journal of Organometallic Chemistry, 2022, 970-971, 122359.	1.8	2
2	4,5-Bis(arylethynyl)-1,2,3-triazolesâ€"A New Class of Fluorescent Labels: Synthesis and Applications. Molecules, 2022, 27, 3191.	3.8	5
3	The carbene transfer to strong Lewis acids: copper is better than silver. Dalton Transactions, 2021, 50, 2872-2879.	3.3	8
4	Design and Synthesis of New 5-aryl-4-Arylethynyl-1H-1,2,3-triazoles with Valuable Photophysical and Biological Properties. Molecules, 2021, 26, 2801.	3.8	7
5	Heterocycloalkynes Fused to a Heterocyclic Core: Searching for an Island with Optimal Stability-Reactivity Balance. Journal of the American Chemical Society, 2021, 143, 16519-16537.	13.7	15
6	Alternative Transformations of N-Heterocyclic Carbene Complexes of the Group 11 Metals in Transmetalation Reactions (A Review). Russian Journal of General Chemistry, 2021, 91, 2194-2248.	0.8	3
7	4-Azidocinnoline—Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe. Molecules, 2021, 26, 7460.	3.8	2
8	N-Propargylation and Copper(I)-Catalyzed Azide-Alkyne Cycloaddition as a Convenient Strategy for Directed Post-Synthetic Modification of 4-Oxo-1,4-Dihydrocinnoline Derivatives. Chemistry of Heterocyclic Compounds, 2020, 56, 915-922.	1.2	8
9	5-lodo-1H-1,2,3-triazoles as Versatile Building Blocks. Synthesis, 2020, 52, 1874-1896.	2.3	15
10	Intramolecular Nicholas Reactions in the Synthesis of Heteroenediynes Fused to Indole, Triazole, and Isocoumarin. Journal of Organic Chemistry, 2020, 85, 9001-9014.	3.2	15
11	A.E.Favorskii's scientific legacy in modern organic chemistry: prototropic acetylene – allene isomerization and the acetylene zipper reaction. Russian Chemical Reviews, 2020, 89, 125-171.	6.5	7
12	Copper-based nanocatalysts produced via laser-induced ex situ generation for homo- and cross-coupling reactions. Chemical Engineering Science, 2020, 227, 115940.	3.8	6
13	Intramolecular hydrogen bonding stabilizes trans-configuration in a mixed carbene/isocyanide PdII complexes. Journal of Organometallic Chemistry, 2020, 912, 121174.	1.8	27
14	In situ laser-induced synthesis of gas sensing microcomposites based on molybdenum and its oxides. Composites Part B: Engineering, 2019, 157, 322-330.	12.0	15
15	Synthesis and Properties of 6-Aryl-4-azidocinnolines and 6-Aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. Molecules, 2019, 24, 2386.	3.8	7
16	1-lodobuta-1,3-diynes in Copper-Catalyzed Azide–Alkyne Cycloaddition: A One-Step Route to 4-Ethynyl-5-iodo-1,2,3-triazoles. Journal of Organic Chemistry, 2019, 84, 1925-1940.	3.2	21
17	10-Membered Azaenediyne Fused to a Benzothiophene through the Nicholas Macrocyclization: Synthesis and DNA Cleavage Ability. Synlett, 2019, 30, 161-166.	1.8	9
18	Relative Reactivity of Benzothiophene-Fused Enediynes in the Bergman Cyclization. Journal of Organic Chemistry, 2018, 83, 2788-2801.	3.2	23

#	Article	IF	CITATIONS
19	Influence of the ligand nature on the in situ laser-induced synthesis of the electrocatalytically active copper microstructures. Arabian Journal of Chemistry, 2018, 11, 624-634.	4.9	9
20	In situ laser-induced codeposition of copper and different metals for fabrication of microcomposite sensor-active materials. Analytica Chimica Acta, 2018, 1044, 138-146.	5. 4	20
21	Polystyrene-Supported Acyclic Diaminocarbene Palladium Complexes in Sonogashira Cross-Coupling: Stability vs. Catalytic Activity. Catalysts, 2018, 8, 141.	3.5	35
22	Modern Trends of Organic Chemistry in Russian Universities. Russian Journal of Organic Chemistry, 2018, 54, 157-371.	0.8	68
23	Functionalized buta-1,3-diynyl- N -methylpyrazoles by sequential "diacetylene zipper―and Sonogashira coupling reactions. Tetrahedron Letters, 2017, 58, 762-765.	1.4	7
24	Synthesis and Simple Immobilization of Palladium(II) Acyclic Diaminocarbene Complexes on Polystyrene Support as Efficient Catalysts for Sonogashira and Suzuki–Miyaura Cross-Coupling. Organometallics, 2016, 35, 1684-1697.	2.3	79
25	Oxaenediynes through the Nicholasâ€√ype Macrocyclization Approach. European Journal of Organic Chemistry, 2016, 2016, 4842-4851.	2.4	15
26	Towards Isocoumarinâ€Fused Enediyne Systems through the Electrophilic Cyclization of Methyl <i>o</i> â€(Butaâ€1,3â€diynyl)benzoates. European Journal of Organic Chemistry, 2016, 2016, 739-747.	2.4	10
27	Synthesis and chemosensing properties of cinnoline-containing poly(arylene ethynylene)s. Beilstein Journal of Organic Chemistry, 2015, 11, 373-384.	2.2	19
28	Ring-Closing Metathesis of Co ₂ (CO) ₆ â€"Alkyne Complexes for the Synthesis of 11-Membered Dienediynes: Overcoming Thermodynamic Barriers. Journal of Organic Chemistry, 2015, 80, 5546-5555.	3.2	17
29	Synthesis of 2-(buta-1,3-diynyl)-N,N-dimethylanilines Using Reductive Methylation Step. Mendeleev Communications, 2014, 24, 102-104.	1.6	4
30	Electrophilic Cyclization of Aryldiacetylenes in the Synthesis of Functionalized Enediynes Fused to a Heterocyclic Core. Journal of Organic Chemistry, 2014, 79, 9018-9045.	3.2	64
31	An acetylene zipperâ€"Sonogashira reaction sequence for the efficient synthesis of conjugated arylalkadiynols. Tetrahedron Letters, 2013, 54, 2235-2238.	1.4	11
32	Catalytic activity of palladium acyclic diaminocarbene complexes in the synthesis of 1,3-diarylpropynones via Sonogashira reaction: cross- versus homo-coupling. Tetrahedron Letters, 2013, 54, 2369-2372.	1.4	35
33	Electrophilic Cyclization and Ringâ€Closing Metathesis as Key Steps in the Synthesis of a 12â€Membered Cyclic Enediyne. European Journal of Organic Chemistry, 2012, 2012, 5660-5664.	2.4	11
34	Synthesis and Reactivity of Cinnoline-Fused Cyclic Enediyne. Journal of Organic Chemistry, 2011, 76, 6937-6941.	3.2	27
35	Highly Stereoselective 1,3-Dipolar Cycloaddition of Nitrones to (Nitrile) ₂ Pt ^{II} Species Furnishing Diastereomerically Pure 2,3-Dihydro-1,2,4-oxadiazole Ligands. Organometallics, 2011, 30, 595-602.	2.3	24
36	Substituent R-Dependent Regioselectivity Switch in Nucleophilic Addition of <i>N < /i>-Phenylbenzamidine to Pd < sup > II < /sup > - and Pt < sup > II < /sup > - Complexed Isonitrile RNâ%¡C Giving Aminocarbene-Like Species. Organometallics, 2011, 30, 863-874.</i>	2.3	65

#	Article	IF	Citations
37	Access to 2,3-bis(buta-1,3-diynyl)pyridines. Mendeleev Communications, 2011, 21, 19-20.	1.6	3
38	Electrophilic Cyclization of Buta-1,3-diynylarenes: Synthesis of Precursors of (Z)-3-Ene-1,5-diyne Systems Fused to Heterocycles. Synlett, 2011, 2011, 517-520.	1.8	5
39	A short route to 3-alkynyl-4-bromo(chloro)cinnolines by Richter-type cyclization of ortho-(dodeca-1,3-diynyl)aryltriaz-1-enes. Tetrahedron Letters, 2009, 50, 6358-6360.	1.4	25
40	Pt $<$ sup $>$ II $<$ /sup $>$ -Mediated 1,3-Dipolar Cycloaddition of Oxazoline $<$ i $>$ N $<$ /i $>$ -Oxides to Nitriles as a Key Step to Dihydrooxazolo-1,2,4-oxadiazoles. Inorganic Chemistry, 2007, 46, 8323-8331.	4.0	25
41	The Richter reaction of ortho-(alka-1,3-diynyl)aryldiazonium salts. Tetrahedron Letters, 2007, 48, 4907-4909.	1.4	25
42	Tetrachloridobis{(E)-1-[(E)-(1R,4R)-1,7,7-trimethylbicyclo[2.2.1]hept-2-ylideneaminooxy]propylideneamine}platin Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m589-m590.	um(IV).	0
43	A Convenient Synthesis of Functionalised 1-Aryl-1,3-alkadiynes. European Journal of Organic Chemistry, 2005, 2005, 882-888.	2.4	21
44	A Convenient Synthesis of Functionalized 1-Aryl-1,3-alkadiynes ChemInform, 2005, 36, no.	0.0	0
45	A One-Pot Synthesis of 1-Arylalka-1,3-diynes by Sequential Acetylene Zipper and Sonogashira Reactions ChemInform, 2003, 34, no.	0.0	0
46	A one-pot synthesis of 1-arylalka-1,3-diynes by sequential acetylene zipper and Sonogashira reactions. Tetrahedron Letters, 2003, 44, 107-109.	1.4	21
47	Reactions of [H2Os3(CO)10] with Conjugated Diynes (RC2C2Râ \in) Containing Nucleophilic Oxygen in \hat{I}^2 Position of a Substituent (R = Ph, Râ \in = CH2OH, C(O)Ph; R = Râ \in = CMe2(OH)). Organometallics, 2003, 22, 3455-3465.	2.3	19
48	Unusual C–H bond activation—aldol condensation of aromatic aldehydes with the methyl group of a carbene-like triosmium cluster. Dalton Transactions RSC, 2002, , 827.	2.3	14
49	Reactions of Diacetylene Ligands with Trinuclear Clusters. 3. Cyclization of Diynes with \hat{l}^2 -Amino Moieties on the Metal Core of [H2Os3(CO)10]. Organometallics, 2001, 20, 3854-3863.	2.3	22
50	One-bond 13C–13C couplings in diacetylenes: experimental and theoretical studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 817-824.	3.9	7
51	Fixation of DNA directly on optical waveguide surfaces for molecular probe biosensor development. Sensors and Actuators B: Chemical, 1995, 29, 324-327.	7.8	18