Yildirim Hurmuzlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507821/publications.pdf

Version: 2024-02-01

33	1,343	535685 17	511568
papers	citations	h-index	g-index
33	33	33	935
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Real time control of tethered satellite systems to de-orbit space debris. Aerospace Science and Technology, 2021, 109, 106379.	2.5	19
2	Feedback Linearization of Inertially Actuated Jumping Robots. Actuators, 2021, 10, 114.	1.2	3
3	Design and Nonlinear Control of a Haptic Glove for Virtual Palpation. , 2020, , .		1
4	Teleoperation control scheme for magnetically actuated microrobots with haptic guidance. Journal of Micro-Bio Robotics, 2020, 16, 161-171.	2.1	1
5	Magnetically Actuated Simple Millirobots for Complex Navigation and Modular Assembly. IEEE Robotics and Automation Letters, 2020, 5, 2958-2965.	3.3	19
6	Complementarity Relationships and Critical Configurations in Rigid-Body Collisions of Planar Kinematic Chains With Smooth External Contacts. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	1
7	Planar Impacts in Hybrid Chains of Cylinders and Balls. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	2
8	Nonlinear dynamics and control of an inertially actuated jumper robot. Nonlinear Dynamics, 2019, 97, 161-176.	2.7	20
9	Dynamics, stability, and experimental results for a baton robot with double-action inertial actuation. International Journal of Dynamics and Control, 2018, 6, 739-757.	1.5	4
10	Kinematic Locomotion Modes of Particle-Based Linear Chain Mechanisms. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2018, 140, .	0.9	3
11	Adaptive Control of Inertially Actuated Bouncing Robot. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2196-2207.	3.7	13
12	Pivot Walking of an Inertially Actuated Robot. IEEE Transactions on Robotics, 2016, 32, 1152-1162.	7.3	9
13	Modeling, design, and implementation of a baton robot with double-action inertial actuation. Mechatronics, 2015, 29, 1-12.	2.0	11
14	Robotic locomotion of three generations of a family tree of dynamical systems. Part I: Passive gait patterns. Nonlinear Dynamics, 2013, 73, 1969-1989.	2.7	21
15	Robotic locomotion of three generations of a family tree of dynamical systems. Part II: Impulsive control of gait patterns. Nonlinear Dynamics, 2013, 73, 1991-2012.	2.7	21
16	A New Contact Force Model for Low Coefficient of Restitution Impact. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	50
17	Shock Absorption Using Linear Particle Chains With Multiple Impacts. Journal of Applied Mechanics, Transactions ASME, 2011, 78, .	1.1	14
18	Solving frictionless rocking block problem with multiple impacts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 3323-3339.	1.0	32

#	Article	IF	Citations
19	Gravity Powered Locomotion and Active Control of Two Simple Systems. , 2009, , .		5
20	Modeling, stability and control of biped robots—a general framework. Automatica, 2004, 40, 1647-1664.	3.0	199
21	Passively walking five-link robot. Automatica, 2004, 40, 621-629.	3.0	54
22	Generating pathological gait patterns via the use of robotic locomotion models. Technology and Health Care, 2002, 10, 135-146.	0.5	6
23	Eliminating the Reaching Phase From Variable Structure Control. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2000, 122, 753-757.	0.9	54
24	Effect of a Pneumatically Driven Haptic Interface on the Perceptional Capabilities of Human Operators. Presence: Teleoperators and Virtual Environments, 1998, 7, 290-307.	0.3	24
25	Nonlinear dynamics of an elastic rod with frictional impact. Nonlinear Dynamics, 1996, 10, 187-201.	2.7	39
26	Kinematics and Dynamic Stability of the Locomotion of Post-Polio Patients. Journal of Biomechanical Engineering, 1996, 118, 405-411.	0.6	77
27	On the Measurement of Dynamic Stability of Human Locomotion. Journal of Biomechanical Engineering, 1994, 116, 30-36.	0.6	162
28	Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points. International Journal of Robotics Research, 1994, 13, 82-92.	5 . 8	316
29	Sliding Control Without Reaching Phase and Its Application to Bipedal Locomotion. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1993, 115, 447-455.	0.9	50
30	Trajectory Tracking in Robotic Systems using Variable Structure Control without a Reaching Phase. , 1992, , .		9
31	Bipedal locomotion stabilized by impact and switching: I. Two-and three-dimensional, three-element models. Dynamical Systems, 1987, 2, 73-96.	0.7	28
32	Bipedal locomotion stabilized by impact and switching: II. Structural stability analysis of a four-element bipedal locomotion model. Dynamical Systems, 1987, 2, 97-112.	0.7	13
33	The role of impact in the stability of bipedal locomotion. Dynamical Systems, 1986, 1, 217-234.	0.7	63