Michael I Bukrinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507637/publications.pdf

Version: 2024-02-01

71061 62565 7,220 137 41 80 citations h-index g-index papers 143 143 143 6888 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Abundance of Nef and p-Tau217 in Brains of Individuals Diagnosed with HIV-Associated Neurocognitive Disorders Correlate with Disease Severance. Molecular Neurobiology, 2022, 59, 1088-1097.	1.9	7
2	Editorial: Lipids and Inflammation in Health and Disease. Frontiers in Cardiovascular Medicine, 2022, 9, 864429.	1.1	1
3	Non-linear optical imaging of atherosclerotic plaques in the context of SIV and HIV infection prominently detects crystalline cholesterol esters. PLoS ONE, 2021, 16, e0251599.	1.1	2
4	Direct interaction between ABCA1 and HIV-1 Nef: Molecular modeling and virtual screening for inhibitors. Computational and Structural Biotechnology Journal, 2021, 19, 3876-3884.	1.9	5
5	Lipid rafts and pathogens: the art of deception and exploitation. Journal of Lipid Research, 2020, 61, 601-610.	2.0	43
6	Comorbidities of HIV infection. Aids, 2020, 34, 1-13.	1.0	30
7	Editorial On "Exosomes, Their Biogenesis and Role in Inter-Cellular Communication, Tumor Microenvironment and Cancer Immunotherapy― Vaccines, 2020, 8, 421.	2.1	2
8	Modification of lipid rafts by extracellular vesicles carrying HIV-1 protein Nef induces redistribution of amyloid precursor protein and Tau, causing neuronal dysfunction. Journal of Biological Chemistry, 2020, 295, 13377-13392.	1.6	20
9	Fingolimod inhibits multiple stages of the HIV-1 life cycle. PLoS Pathogens, 2020, 16, e1008679.	2.1	8
10	Targeting Lipid Raftsâ€"A Potential Therapy for COVID-19. Frontiers in Immunology, 2020, 11, 574508.	2.2	45
11	CBF-1 Promotes the Establishment and Maintenance of HIV Latency by Recruiting Polycomb Repressive Complexes, PRC1 and PRC2, at HIV LTR. Viruses, 2020, 12, 1040.	1.5	19
12	Cholesterol Efflux-Independent Modification of Lipid Rafts by AIBP (Apolipoprotein A-I Binding) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 302
13	The lysosome: A potential juncture between SARSâ€CoVâ€2 infectivity and Niemannâ€Pick diseaseÂtype C, with therapeutic implications. FASEB Journal, 2020, 34, 7253-7264.	0.2	83
14	Inhibition of HIV Replication by Apolipoprotein A-I Binding Protein Targeting the Lipid Rafts. MBio, 2020, 11, .	1.8	24
15	DNA dependent protein kinase (DNA-PK) enhances HIV transcription by promoting RNA polymerase II activity and recruitment of transcription machinery at HIV LTR. Oncotarget, 2020, 11, 699-726.	0.8	14
16	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		0
17	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		O
18	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		0

#	Article	IF	Citations
19	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		O
20	Fingolimod inhibits multiple stages of the HIV-1 life cycle., 2020, 16, e1008679.		0
21	Fingolimod inhibits multiple stages of the HIV-1 life cycle. , 2020, 16, e1008679.		0
22	Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathogens, 2019, 15, e1007907.	2.1	86
23	Listeria monocytogenes hijacks CD147 to ensure proper membrane protrusion formation and efficient bacterial dissemination. Cellular and Molecular Life Sciences, 2019, 76, 4165-4178.	2.4	7
24	HIV disease, metabolic dysfunction and atherosclerosis: A three year prospective study. PLoS ONE, 2019, 14, e0215620.	1.1	20
25	Modified LDL Particles Activate Inflammatory Pathways in Monocyte-derived Macrophages: Transcriptome Analysis. Current Pharmaceutical Design, 2018, 24, 3143-3151.	0.9	29
26	Modelling interaction between HIV-1 Nef and calnexin. Aids, 2018, 32, 2103-2111.	1.0	7
27	Atherosclerosis in subjects newly diagnosed with human immunodeficiency virus infection. Bioscience Reports, 2018, 38, .	1.1	6
28	HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages. Experimental and Molecular Pathology, 2018, 105, 202-207.	0.9	11
29	Association of a 3′ untranslated region polymorphism in proprotein convertase subtilisin/kexin type 9 with HIV viral load and CD4+ levels in HIV/hepatitis C virus coinfected women. Aids, 2017, 31, 2483-2492.	1.0	6
30	Genes associated with cholesterol accumulation in macrophages (transcriptome analysis). Atherosclerosis, 2017, 263, e117.	0.4	2
31	Short Communication: Accumulation of Neutral Lipids in Liver and Aorta of Nef-Transgenic Mice. AIDS Research and Human Retroviruses, 2017, 33, 57-60.	0.5	8
32	Use of Primary Macrophages for Searching Novel Immunocorrectors. Current Pharmaceutical Design, 2017, 23, 915-920.	0.9	3
33	Cold Atmospheric Plasma Inhibits HIV-1 Replication in Macrophages by Targeting Both the Virus and the Cells. PLoS ONE, 2016, 11, e0165322.	1.1	36
34	HIV-1 Integrates Widely throughout the Genome of the Human Blood Fluke Schistosoma mansoni. PLoS Pathogens, 2016, 12, e1005931.	2.1	20
35	Live Cell Imaging of ABCA1 Downregulation by HIV-1 Nef in an Experimental Model of HeLa ABCA1-GFP. AIDS Research and Human Retroviruses, 2016, 32, 872-873.	0.5	0
36	Interaction Between HIV-1 Nef and Calnexin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1758-1771.	1.1	21

3

#	Article	IF	CITATIONS
37	Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells. Cell Reports, 2016, 16, 186-200.	2.9	39
38	Cellular minichromosome maintenance complex component 5 (MCM5) is incorporated into HIV-1 virions and modulates viral replication in the newly infected cells. Virology, 2016, 497, 11-22.	1.1	3
39	Small GTPase ARF6 Regulates Endocytic Pathway Leading to Degradation of ATP-Binding Cassette Transporter A1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2292-2303.	1.1	31
40	Lipidomic dataset of plasma from patients infected with wild type and nef-deficient HIV-1 strain. Data in Brief, 2016, 6, 168-175.	0.5	1
41	The effects of cocaine on HIV transcription. Journal of NeuroVirology, 2016, 22, 261-274.	1.0	23
42	Lipid metabolism in patients infected with Nef-deficient HIV-1 strain. Atherosclerosis, 2016, 244, 22-28.	0.4	16
43	Analysis of ABCA1 and Cholesterol Efflux in HIV-Infected Cells. Methods in Molecular Biology, 2016, 1354, 281-292.	0.4	5
44	Mechanisms of HIV Transcriptional Regulation by Drugs of Abuse. Current HIV Research, 2016, 14, 442-454.	0.2	29
45	Jan van der Noordaa (1934–2015); A Virologist Pur Sang. Viruses, 2015, 7, 5016-5017.	1.5	0
46	Targeting Extracellular Cyclophilins Ameliorates Disease Progression in Experimental Biliary Atresia. Molecular Medicine, 2015, 21, 657-664.	1.9	16
47	Inhibition of Extracellular Cyclophilins with Cyclosporine Analog and Development of Atherosclerosis in Apolipoprotein E–Deficient Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 490-495.	1.3	9
48	Extracellular cyclophilins in health and disease. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2087-2095.	1.1	43
49	Stimulation of Liver X Receptor Has Potent Anti-HIV Effects in a Humanized Mouse Model of HIV Infection. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 376-383.	1.3	14
50	HIV infection induces structural and functional changes in high density lipoproteins. Atherosclerosis, 2015, 243, 19-29.	0.4	27
51	HIV-1 Protein Nef Inhibits Activity of ATP-binding Cassette Transporter A1 by Targeting Endoplasmic Reticulum Chaperone Calnexin. Journal of Biological Chemistry, 2014, 289, 28870-28884.	1.6	30
52	New Clues to Understanding HIV Nonprogressors: Low Cholesterol Blocks HIV Trans Infection. MBio, 2014, 5, e01396-14.	1.8	13
53	HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis. FASEB Journal, 2014, 28, 2828-2839.	0.2	45
54	Interaction of pathogens with host cholesterol metabolism. Current Opinion in Lipidology, 2014, 25, 333-338.	1.2	40

#	Article	IF	CITATIONS
55	HIV-1 Infection of Macrophages Induces Retention of Cholesterol Transporter ABCA1 in the Endoplasmic Reticulum. AIDS Research and Human Retroviruses, 2014, 30, 947-948.	0.5	13
56	The ABCA1 domain responsible for interaction with HIV-1 Nef is conformational and not linear. Biochemical and Biophysical Research Communications, 2014, 444, 19-23.	1.0	4
57	Prion Infection Impairs Cholesterol Metabolism in Neuronal Cells. Journal of Biological Chemistry, 2014, 289, 789-802.	1.6	31
58	Nature, nurture and HIV: The effect of producer cell on viral physiology. Virology, 2013, 443, 208-213.	1.1	21
59	The effect of HIV infection on atherosclerosis and lipoprotein metabolism: A one year prospective study. Atherosclerosis, 2013, 229, 206-211.	0.4	31
60	Cyclophilins in Atherosclerosis: A New Therapeutic Target?. Current Pharmaceutical Design, 2013, 19, 5904-5908.	0.9	4
61	HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. Journal of Lipid Research, 2012, 53, 696-708.	2.0	69
62	Liver X receptor agonist inhibits HIV-1 replication and prevents HIV-induced reduction of plasma HDL in humanized mouse model of HIV infection. Biochemical and Biophysical Research Communications, 2012, 419, 95-98.	1.0	19
63	Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology, 2012, 9, 65.	0.9	62
64	Human Immunodeficiency Virus (HIV) Latency: The Major Hurdle in HIV Eradication. Molecular Medicine, 2012, 18, 1096-1108.	1.9	62
65	Migration of Jurkat cells in response to CypA. FASEB Journal, 2012, 26, 521.3.	0.2	0
66	Blocking Cyclophilins in the Chronic Phase of Asthma Reduces the Persistence of Leukocytes and Disease Reactivation. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 991-998.	1.4	27
67	Cyclophilin A cooperates with MIP-2 to augment neutrophil migration. Journal of Inflammation Research, 2011, 4, 93.	1.6	25
68	Vpr-Host Interactions During HIV-1 Viral Life Cycle. Journal of NeuroImmune Pharmacology, 2011, 6, 216-229.	2.1	39
69	The level of CD147 expression correlates with cyclophilin-induced signalling and chemotaxis. BMC Research Notes, 2011, 4, 396.	0.6	18
70	A Cyclosporin Derivative Discriminates between Extracellular and Intracellular Cyclophilins. Angewandte Chemie - International Edition, 2010, 49, 213-215.	7.2	43
71	HIV-1 Replication through hHR23A-Mediated Interaction of Vpr with 26S Proteasome. PLoS ONE, 2010, 5, e11371.	1.1	10
72	Stimulation of the Liver X Receptor Pathway Inhibits HIV-1 Replication via Induction of ATP-Binding Cassette Transporter A1. Molecular Pharmacology, 2010, 78, 215-225.	1.0	54

#	Article	IF	CITATIONS
73	A Cell-Impermeable Cyclosporine A Derivative Reduces Pathology in a Mouse Model of Allergic Lung Inflammation. Journal of Immunology, 2010, 185, 7663-7670.	0.4	53
74	Mutation of the ATP Cassette Binding Transporter A1 (ABCA1) C-Terminus Disrupts HIV-1 Nef Binding but Does Not Block the Nef Enhancement of ABCA1 Protein Degradation. Biochemistry, 2010, 49, 8338-8349.	1.2	32
75	Circulating Nef Induces Dyslipidemia in Simian Immunodeficiency Virus–Infected Macaques by Suppressing Cholesterol Efflux. Journal of Infectious Diseases, 2010, 202, 614-623.	1.9	51
76	HIV-1 Viral Protein R (VPR) and its Interactions with Host Cell. Current HIV Research, 2009, 7, 178-183.	0.2	17
77	HIV-1 transforms the monocyte plasma membrane proteome. Cellular Immunology, 2009, 258, 44-58.	1.4	25
78	Targeting the chemotactic function of CD147 reduces collagenâ€induced arthritis. Immunology, 2009, 126, 55-62.	2.0	85
79	Solution Characterization of the Extracellular Region of CD147 and Its Interaction with Its Enzyme Ligand Cyclophilin A. Journal of Molecular Biology, 2009, 391, 518-535.	2.0	66
80	Unsung Hero Robert C. Gallo. Science, 2009, 323, 206-207.	6.0	2
81	Antiretroviral compounds and cholesterol efflux from macrophages. Atherosclerosis, 2009, 206, 439-443.	0.4	6
82	The macrophage: the intersection between HIV infection and atherosclerosis. Journal of Leukocyte Biology, 2009, 87, 589-598.	1.5	119
83	Functional analysis of Leishmania major cyclophilin. International Journal for Parasitology, 2008, 38, 633-639.	1.3	9
84	How to engage Cofilin. Retrovirology, 2008, 5, 85.	0.9	14
85	HIV infection and high density lipoprotein metabolism. Atherosclerosis, 2008, 199, 79-86.	0.4	127
86	Enhancing apolipoprotein A-I-dependent cholesterol efflux elevates cholesterol export from macrophages in vivo. Journal of Lipid Research, 2008, 49, 2312-2322.	2.0	44
87	HIV and Cardiovascular Disease: Contribution of HIV-Infected Macrophages to Development of Atherosclerosis. PLoS Medicine, 2007, 4, e43.	3.9	18
88	Interactions of HIVâ€1 Viral Protein R with Host Cell Proteins. Advances in Pharmacology, 2007, 55, 233-260.	1.2	11
89	Preferential chemotaxis of activated human CD4+ T cells by extracellular cyclophilin A. Journal of Leukocyte Biology, 2007, 82, 613-618.	1.5	104
90	CD147 stimulates HIV-1 infection in a signal-independent fashion. Biochemical and Biophysical Research Communications, 2007, 363, 495-499.	1.0	29

#	Article	IF	CITATIONS
91	The Role of Different Regions of ATP-Binding Cassette Transporter A1 in Cholesterol Efflux. Biochemistry, 2007, 46, 9388-9398.	1.2	22
92	Anti-Vpr Activities of Heat Shock Protein 27. Molecular Medicine, 2007, 13, 229-239.	1.9	34
93	SNFing HIV transcription. Retrovirology, 2006, 3, 49.	0.9	19
94	Dealing with the family: CD147 interactions with cyclophilins. Immunology, 2006, 117, 301-309.	2.0	164
95	Human Immunodeficiency Virus Impairs Reverse Cholesterol Transport from Macrophages. PLoS Biology, 2006, 4, e365.	2.6	266
96	Human immunodeficiency virus infection and macrophage cholesterol metabolism. Journal of Leukocyte Biology, 2006, 80, 1044-1051.	1.5	42
97	Novel Approach to Inhibit Asthma-Mediated Lung Inflammation Using Anti-CD147 Intervention. Journal of Immunology, 2006, 177, 4870-4879.	0.4	116
98	Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions. Cell Research, 2005, 15, 923-934.	5.7	65
99	Regulation of CD147 Cell Surface Expression. Journal of Biological Chemistry, 2005, 280, 17013-17019.	1.6	60
100	Oxadiazols: a New Class of Rationally Designed Anti-Human Immunodeficiency Virus Compounds Targeting the Nuclear Localization Signal of the Viral Matrix Protein. Journal of Virology, 2005, 79, 13028-13036.	1.5	30
101	Extracellular Cyclophilins Contribute to the Regulation of Inflammatory Responses. Journal of Immunology, 2005, 175, 517-522.	0.4	210
102	Cell Surface Expression of CD147/EMMPRIN Is Regulated by Cyclophilin 60. Journal of Biological Chemistry, 2005, 280, 27866-27871.	1.6	66
103	Nuclear translocation as a novel target for anti-HIV drugs. Expert Review of Anti-Infective Therapy, 2005, 3, 41-50.	2.0	8
104	Anti-Vpr Activity of a Yeast Chaperone Protein. Journal of Virology, 2004, 78, 11016-11029.	1.5	26
105	Heat Shock Protein 70 Protects Cells from Cell Cycle Arrest and Apoptosis Induced by Human Immunodeficiency Virus Type 1 Viral Protein R. Journal of Virology, 2004, 78, 9697-9704.	1.5	85
106	Heat-Shock Proteins Reverse the G2Arrest Caused by HIV-1 Viral Protein R. DNA and Cell Biology, 2004, 23, 223-225.	0.9	17
107	A hard way to the nucleus. Molecular Medicine, 2004, 10, 1-5.	1.9	41
108	\hat{l}^2 -Chemokine production in CD40L-stimulated monocyte-derived macrophages requires activation of MAPK signaling pathways. Cytokine, 2003, 23, 53-63.	1.4	8

#	Article	IF	CITATIONS
109	Phosphorylation of Vpr Regulates HIV Type 1 Nuclear Import and Macrophage Infection. AIDS Research and Human Retroviruses, 2002, 18, 283-288.	0.5	35
110	Cardiomyocytes undergo apoptosis in human immunodeficiency virus cardiomyopathy through mitochondrion- and death receptor-controlled pathways. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14386-14391.	3.3	96
111	Human Immunodeficiency Virus Type 1 Enters Brain Microvascular Endothelia by Macropinocytosis Dependent on Lipid Rafts and the Mitogen-Activated Protein Kinase Signaling Pathway. Journal of Virology, 2002, 76, 6689-6700.	1.5	256
112	Active Site Residues of Cyclophilin A Are Crucial for Its Signaling Activity via CD147. Journal of Biological Chemistry, 2002, 277, 22959-22965.	1.6	283
113	Cyclophilins: unexpected messengers in intercellular communications. Trends in Immunology, 2002, 23, 323-325.	2.9	87
114	Inhibition of HIV-1 nuclear import via schiff base formation with arylene bis(methylketone) compounds. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3117-3119.	1.0	15
115	CD147 Is a Signaling Receptor for Cyclophilin B. Biochemical and Biophysical Research Communications, 2001, 288, 786-788.	1.0	129
116	The Binding Subunit of Pertussis Toxin Inhibits HIV Replication in Human Macrophages and Virus Expression in Chronically Infected Promonocytic U1 Cells. Journal of Immunology, 2001, 166, 1863-1870.	0.4	33
117	Small molecule inhibitor of HIV-1 nuclear import suppresses HIV-1 replication in human lymphoid tissue ex vivo: a potential addition to current anti-HIV drug repertoire. Antiviral Research, 2000, 47, 89-95.	1.9	7
118	The B-Oligomer of Pertussis Toxin Inhibits Human Immunodeficiency Virus Type 1 Replication at Multiple Stages. Journal of Virology, 2000, 74, 8767-8770.	1.5	36
119	Lipopolysaccharide Inhibits HIV-1 Infection of Monocyte- Derived Macrophages Through Direct and Sustained Down-Regulation of CC Chemokine Receptor 5. Journal of Immunology, 2000, 164, 2592-2601.	0.4	66
120	Heat-Shock Protein 70 Can Replace Viral Protein R of HIV-1 during Nuclear Import of the Viral Preintegration Complex. Experimental Cell Research, 2000, 259, 398-403.	1.2	85
121	Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2000, 299, 359-368.	2.0	135
122	The B-Oligomer of Pertussis Toxin Deactivates Cc Chemokine Receptor 5 and Blocks Entry of M-Tropic HIV-1 Strains. Journal of Experimental Medicine, 1999, 190, 597-606.	4.2	97
123	Viral protein R of HIV-1., 1999, 9, 39-49.		69
124	Relative Contribution of Transcription and Translation to the Induction of Tumor Necrosis Factor- \hat{l}_{\pm} by Lipopolysaccharide. Journal of Biological Chemistry, 1998, 273, 974-980.	1.6	164
125	Viral Protein R Regulates Docking of the HIV-1 Preintegration Complex to the Nuclear Pore Complex. Journal of Biological Chemistry, 1998, 273, 13347-13352.	1.6	164
126	CNI-H0294, a Nuclear Importation Inhibitor of the Human Immunodeficiency Virus Type 1 Genome, Abrogates Virus Replication in Infected Activated Peripheral Blood Mononuclear Cells. Antimicrobial Agents and Chemotherapy, 1998, 42, 1133-1138.	1.4	22

#	ARTICLE	IF	CITATIONS
127	Human Immunodeficiency Virus Type 1 T-Lymphotropic Strains Enter Macrophages via a CD4- and CXCR4-Mediated Pathway: Replication Is Restricted at a Postentry Level. Journal of Virology, 1998, 72, 4633-4642.	1.5	165
128	Cell Proliferation Is Not Required for Productive HIV-1 Infection of Macrophages. Virology, 1997, 232, 379-384.	1.1	28
129	Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia, 1996, 16, 276-284.	2.5	239
130	Chemokines and HIV replication. Nature, 1996, 382, 767-767.	13.7	181
131	Anti-idiotypic Antibody to the V3 Domain of gp120 Binds to Vimentin: A Possible Role of Intermediate Filaments in the Early Steps of HIV-1 Infection Cycle. Viral Immunology, 1996, 9, 73-87.	0.6	33
132	Other approaches. Nature, 1995, 375, 195-196.	13.7	6
133	The neuropathogenesis of HIV-1 infection. Journal of Leukocyte Biology, 1994, 56, 389-398.	1.5	247
134	A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature, 1993, 365, 666-669.	13.7	882
135	Highly Immunogenic Human Immunodeficiency Viruslike Particles are Produced by Recombinant Vaccinia Virus-Infected Cells. AIDS Research and Human Retroviruses, 1991, 7, 29-36.	0.5	30
136	Posttranslational Modifications within the HIV-1 Envelope Glycoprotein Which Restrict Virus Assembly and CD4-Dependent Infection. AIDS Research and Human Retroviruses, 1991, 7, 501-510.	0.5	30
137	Trained Immunity and HIV Infection. Frontiers in Immunology, 0, 13, .	2.2	6