Qiang Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6507582/qiang-chen-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,606 66 102 34 h-index g-index citations papers 5,633 5.82 107 7.2 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
102	Tough, Instant, and Repeatable Adhesion of Self-Healable Elastomers to Diverse Soft and Hard Surfaces <i>Advanced Science</i> , 2022 , e2105742	13.6	1
101	2D material-based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications <i>Analytical and Bioanalytical Chemistry</i> , 2022 , 414, 2971	4.4	O
100	Tough and redox-mediated alkaline gel polymer electrolyte membrane for flexible supercapacitor with high energy density and low temperature resistance. <i>Journal of Membrane Science</i> , 2022 , 650, 1203	886 886	О
99	Design of Vertically Aligned Two-Dimensional Heterostructures of Rigid TiCT MXene and Pliable Vanadium Pentoxide for Efficient Lithium Ion Storage <i>ACS Nano</i> , 2022 ,	16.7	5
98	Preparation of PVA-based composite alkaline solid polymer electrolyte with La2O3 nanoparticle filler. <i>Journal of Nanoparticle Research</i> , 2021 , 23, 1	2.3	O
97	The Jahn-Teller Effect for Amorphization of Molybdenum Trioxide towards High-Performance Fiber Supercapacitor. <i>Research</i> , 2021 , 2021, 6742715	7.8	5
96	Ammonium Intercalation Induced Expanded 1T-Rich Molybdenum Diselenides for Improved Lithium Ion Storage. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 17459-17466	9.5	14
95	Non-Alcoholic Fatty Liver Disease and Hypokalemia in Primary Aldosteronism Among Chinese Population. <i>Frontiers in Endocrinology</i> , 2021 , 12, 565714	5.7	1
94	Tough, Transparent, and Anti-Freezing Nanocomposite Organohydrogels with Photochromic Properties. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 31180-31192	9.5	8
93	Designing Tubular Architectures Composed of Hollow N-Doped Carbon Polyhedrons for Improved Supercapacitance. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100805	4.6	3
92	Mesh-like vertical structures enable both high areal capacity and excellent rate capability. <i>Journal of Energy Chemistry</i> , 2021 , 53, 226-233	12	10
91	Freezing-tolerant and robust gelatin-based supramolecular conductive hydrogels with double-network structure for wearable sensors. <i>Polymer Testing</i> , 2021 , 93, 106879	4.5	11
90	Transforming non-adhesive hydrogels to reversible tough adhesives via mixed-solvent-induced phase separation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9706-9718	13	19
89	Ultrathin NiMn layered double hydroxide nanosheets with a superior peroxidase mimicking performance to natural HRP for disposable paper-based bioassays. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 983-991	7.3	8
88	Tough Interfacial Adhesion of Bilayer Hydrogels with Integrated Shape Memory and Elastic Properties for Controlled Shape Deformation. <i>ACS Applied Materials & Deformation (ACS APPLIED & Defo</i>	18466	8
87	Recent Advances in Molybdenum-Based Materials for Lithium-Sulfur Batteries. <i>Research</i> , 2021 , 2021, 5130420	7.8	10
86	Near-infrared responsive shape memory hydrogels with programmable and complex shape-morphing. <i>Science China Technological Sciences</i> , 2021 , 64, 1752-1764	3.5	4

85	Strong, tough, anti-freezing, non-drying and sensitive ionic sensor based on fully physical cross-linked double network hydrogel. <i>Materials Science and Engineering C</i> , 2021 , 130, 112452	8.3	3
84	A General Protein Unfolding-Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties <i>Advanced Science</i> , 2021 , e2102557	13.6	6
83	Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High-Performance Weaveable/Wearable Supercapacitors. <i>Small</i> , 2020 , 16, e2000653	11	26
82	Mechanistic insight in site-selective and anisotropic etching of prussian blue analogues toward designable complex architectures for efficient energy storage. <i>Nanoscale</i> , 2020 , 12, 11112-11118	7.7	12
81	High-Strength Albumin Hydrogels With Hybrid Cross-Linking. Frontiers in Chemistry, 2020 , 8, 106	5	5
8o	Solution-Processed Sensing Textiles with Adjustable Sensitivity and Linear Detection Range Enabled by Twisting Structure. <i>ACS Applied Materials & Detection Range Replied Range Replied R</i>	9.5	15
79	Flexible, Water-Resistant and Air-Stable LiBH Nanoparticles Loaded Melamine Foam With Improved Dehydrogenation. <i>Frontiers in Chemistry</i> , 2020 , 8, 45	5	3
78	From design to applications of stimuli-responsive hydrogel strain sensors. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3171-3191	7.3	72
77	Flexible and low temperature resistant semi-IPN network gel polymer electrolyte membrane and its application in supercapacitor. <i>Journal of Membrane Science</i> , 2020 , 597, 117740	9.6	22
76	Jahn-Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices. <i>Nanoscale</i> , 2020 , 12, 22075-22081	7.7	11
<i>75</i>	The incorporation of expanded 1T-enriched MoS2 boosts hybrid fiber improved charge storage capability. <i>Carbon</i> , 2020 , 170, 543-549	10.4	11
74	Polyaniline-Decorated Supramolecular Hydrogel with Tough, Fatigue-Resistant, and Self-Healable Performances for All-In-One Flexible Supercapacitors. <i>ACS Applied Materials & Description</i> 12, 9736-9745	9.5	52
73	Hierarchically tubular architectures composed of vertical carbon nanosheets embedded with oxygen-vacancy enriched hollow Co3O4 nanoparticles for improved energy storage. <i>Electrochimica Acta</i> , 2020 , 356, 136843	6.7	10
72	Multifunctional supramolecular gel polymer electrolyte for self-healable and cold-resistant supercapacitor. <i>Journal of Power Sources</i> , 2020 , 474, 228602	8.9	21
71	Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. <i>Carbon</i> , 2020 , 157, 106-112	10.4	31
7°	Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. <i>Small Methods</i> , 2020 , 4, 1900824	12.8	34
69	Natural protein-based hydrogels with high strength and rapid self-recovery. <i>International Journal of Biological Macromolecules</i> , 2019 , 141, 108-116	7.9	10
68	Identifying the active site of ultrathin NiCo LDH as an efficient peroxidase mimic with superior substrate affinity for sensitive detection of hydrogen peroxide. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6232-6237	7.3	22

67	Tough and conductive nanocomposite hydrogels for human motion monitoring. <i>Polymer Testing</i> , 2019 , 75, 38-47	4.5	13
66	Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 1708-1715	7.3	44
65	Fabrication and mechanical behaviors of novel supramolecular/polymer hybrid double network hydrogels. <i>Polymer</i> , 2019 , 168, 159-167	3.9	27
64	Tough and Conductive Dual Physically Cross-Linked Hydrogels for Wearable Sensors. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 17001-17009	3.9	13
63	Chest wall metastasis in postoperative thyroid cancer: a case report. <i>Journal of International Medical Research</i> , 2019 , 47, 4039-4042	1.4	
62	A Highly Elastic and Reversibly Stretchable All-Polymer Supercapacitor. <i>Angewandte Chemie</i> , 2019 , 131, 15854-15858	3.6	21
61	A Highly Elastic and Reversibly Stretchable All-Polymer Supercapacitor. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15707-15711	16.4	122
60	Electrostatically Assembling 2D Nanosheets of MXene and MOF-Derivatives into 3D Hollow Frameworks for Enhanced Lithium Storage. <i>Small</i> , 2019 , 15, e1904255	11	73
59	Multiple Physical Cross-Linker Strategy To Achieve Mechanically Tough and Reversible Properties of Double-Network Hydrogels in Bulk and on Surfaces. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 701-713	4.3	22
58	Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. <i>Journal of Power Sources</i> , 2019 , 414, 201-209	8.9	52
57	General Principle for Fabricating Natural Globular Protein-Based Double-Network Hydrogels with Integrated Highly Mechanical Properties and Surface Adhesion on Solid Surfaces. <i>Chemistry of Materials</i> , 2019 , 31, 179-189	9.6	68
56	General Strategy To Fabricate Strong and Tough Low-Molecular-Weight Gelator-Based Supramolecular Hydrogels with Double Network Structure. <i>Chemistry of Materials</i> , 2018 , 30, 1743-1754	9.6	60
55	Semicrystalline Hydrophobically Associated Hydrogels with Integrated High Performances. <i>ACS Applied Materials & Applied & Applied Materials & Applied & App</i>	9.5	36
54	Effect of Graphite Oxide Dispersion Evaluated with Multifractal on Mechanical Properties and Thermal Stability of Poly(3hydroxybutyrate-co -4hydroxybutyrate)/Graphite Oxide Biocomposites. <i>Advances in Polymer Technology</i> , 2018 , 37, 376-383	1.9	1
53	Nanoclay Reinforced Self-Cross-Linking Poly(N-Hydroxyethyl Acrylamide) Hydrogels with Integrated High Performances. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1800295	3.9	14
52	Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal. <i>Materials</i> , 2018 , 11,	3.5	28
51	Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels. <i>Composites Science and Technology</i> , 2018 , 163, 81-88	8.6	51
50	Double network hydrogels with controlled shape deformation: A mini review. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 1351-1362	2.6	17

(2016-2018)

49	Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 6629-6636	7.3	18
48	Fully physical double network hydrogels with high strength, rapid self-recovery and self-healing performances. <i>Polymer Testing</i> , 2018 , 69, 167-174	4.5	17
47	Hydrogels: A Novel Design of Multi-Mechanoresponsive and Mechanically Strong Hydrogels (Adv. Mater. 21/2017). <i>Advanced Materials</i> , 2017 , 29,	24	2
46	A Novel Design of Multi-Mechanoresponsive and Mechanically Strong Hydrogels. <i>Advanced Materials</i> , 2017 , 29, 1606900	24	156
45	Super Bulk and Interfacial Toughness of Physically Crosslinked Double-Network Hydrogels. <i>Advanced Functional Materials</i> , 2017 , 27, 1703086	15.6	126
44	Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance. <i>ACS Applied Materials & District Materials</i> (1997) 100 (1997	9.5	122
43	The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. <i>Polymer Chemistry</i> , 2017 , 8, 4659-4672	4.9	38
42	High strength and self-healable gelatin/polyacrylamide double network hydrogels. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 7683-7691	7.3	105
41	Effectiveness and Complications of Improved Liposuction-Curettage Through Mini-Incisions for the Treatment of Axillary Osmidrosis. <i>Plastic Surgery</i> , 2017 , 25, 234-241	0.8	5
40	Clinical analysis of hyperkalemia after esophagectomy: A case report. <i>Medicine (United States)</i> , 2017 , 96, e8966	1.8	
39	A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 5814-5824	7.3	44
38	Hybrid nanocomposite hydrogels with high strength and excellent self-recovery performance. <i>RSC Advances</i> , 2016 , 6, 59131-59140	3.7	13
37	Fibroma of tendon sheath in planta. SpringerPlus, 2016 , 5, 575		6
36	Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials. <i>Langmuir</i> , 2016 , 32, 3315-30	4	74
35	Engineering of Tough Double Network Hydrogels. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 1022-1036	2.6	95
34	A rare atypical rapidly involuting congenital hemangioma combined with vascular malformation in the upper limb. <i>World Journal of Surgical Oncology</i> , 2016 , 14, 229	3.4	1
33	Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. <i>Acta Biomaterialia</i> , 2016 , 40, 62-69	10.8	64
32	Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions. <i>Chemistry of Materials</i> , 2016 , 28, 5710-5720	9.6	176

31	Mechanically strong hybrid double network hydrogels with antifouling properties. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5426-5435	7.3	66
30	Fundamentals of double network hydrogels. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3654-3676	7.3	329
29	Simultaneous Enhancement of Stiffness and Toughness in Hybrid Double-Network Hydrogels via the First, Physically Linked Network. <i>Macromolecules</i> , 2015 , 48, 8003-8010	5.5	100
28	Chitosan prevents adhesion during rabbit flexor tendon repair via the sirtuin 1 signaling pathway. <i>Molecular Medicine Reports</i> , 2015 , 12, 4598-4603	2.9	7
27	Artificial finger joint replacement due to a giant cell tumor of the tendon sheath with bone destruction: A case report. <i>Oncology Letters</i> , 2015 , 10, 3502-3504	2.6	9
26	Inflammatory myofibroblastic tumor of the hand: A case report. <i>Oncology Letters</i> , 2015 , 9, 2548-2550	2.6	2
25	A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties. <i>Advanced Functional Materials</i> , 2015 , 25, 1598-1607	15.6	411
24	Three different methods for treating multiple enchondromatosis in one hand. <i>International Journal of Clinical and Experimental Medicine</i> , 2015 , 8, 13417-20		2
23	Hamartoma compress medial and radial nerve in neurofibromatosis type 1. <i>International Journal of Clinical and Experimental Medicine</i> , 2015 , 8, 15313-6		6
22	Pigmented villonodular synovitis of the elbow with rdial, median and ulnar nerve compression. <i>International Journal of Clinical and Experimental Pathology</i> , 2015 , 8, 14045-9	1.4	7
21	Synthesis and characterization of antifouling poly(N-acryloylaminoethoxyethanol) with ultralow protein adsorption and cell attachment. <i>Langmuir</i> , 2014 , 30, 10398-409	4	56
20	Fracture of the Physically Cross-Linked First Network in Hybrid Double Network Hydrogels. <i>Macromolecules</i> , 2014 , 47, 2140-2148	5.5	108
19	Chitosan inhibits fibroblasts growth in Achilles tendon via TGF-II/Smad3 pathway by miR-29b. <i>International Journal of Clinical and Experimental Pathology</i> , 2014 , 7, 8462-70	1.4	23
18	Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates. <i>Biomaterials</i> , 2013 , 34, 4714-24	15.6	67
17	A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. <i>Advanced Materials</i> , 2013 , 25, 4171-6	24	485
16	Synthesis and characterization of pH-sensitive poly(N-2-hydroxyethyl acrylamide) lcrylic acid (poly(HEAA/AA)) nanogels with antifouling protection for controlled release. <i>Soft Matter</i> , 2012 , 8, 7848	3.6	68
15	A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. <i>Journal of Colloid and Interface Science</i> , 2010 , 345, 360-8	9.3	53
14	Preparation and characterization of nanostructured and high transparent hydrogel films with pH sensitivity and application. <i>Journal of Applied Polymer Science</i> , 2009 , 112, 2261-2269	2.9	2

LIST OF PUBLICATIONS

13	Preparation of polyacrylamide aqueous dispersions using poly(sodium acrylic acid) as stabilizer. Journal of Applied Polymer Science, 2009 , 113, 2693-2701	2.9	14
12	Preparation and characterization of poly (N-isopropylacrylamide)/polyvinylamine core-shell microgels. <i>Colloid and Polymer Science</i> , 2009 , 287, 1339-1346	2.4	12
11	Low Cationic Proportion Ampholytic Polymer: Synthesis, Solution Properties and Interaction with Anionic Surfactant. <i>Polymer Bulletin</i> , 2008 , 60, 545-554	2.4	4
10	Synthesis and aqueous solution properties of hydrophobically modified anionic acrylamide copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2008 , 46, 2465-2474	2.6	34
9	Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug delivery. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 3836-384	12 ^{2.9}	19
8	Phase behavior and self-assembly of poly[N-vinylformamide-co-(acrylic acid)] copolymers under highly acidic conditions. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 2802-2807	2.9	1
7	Spontaneous volume transition of polyampholyte nanocomposite hydrogels based on pure electrostatic interaction. <i>Journal of Colloid and Interface Science</i> , 2008 , 321, 272-8	9.3	31
6	Effect of acetylation on the properties of corn starch. <i>Food Chemistry</i> , 2008 , 106, 923-928	8.5	251
5	Polyampholytes superabsorbent nanocomposites with excellent gel strength. <i>Composites Science and Technology</i> , 2007 , 67, 3480-3486	8.6	34
4	Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite. <i>Applied Clay Science</i> , 2007 , 38, 139-145	5.2	45
3	A Temperature-Responsive Copolymer Hydrogel in Controlled Drug Delivery. <i>Macromolecules</i> , 2006 , 39, 6584-6589	5.5	153
2	Recent Progress in Double Network Elastomers: One Plus One is Greater Than Two. <i>Advanced Functional Materials</i> ,2110244	15.6	5
1	Wet-Chemistry: A Useful Tool for Deriving Metal®rganic Frameworks toward Supercapacitors and Secondary Batteries. <i>Advanced Materials Interfaces</i> ,2102595	4.6	1