Amar Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507356/publications.pdf

Version: 2024-02-01

430874 345221 1,320 47 18 36 h-index citations g-index papers 47 47 47 1158 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions––influence of time of wetness. Corrosion Science, 2004, 46, 169-181.	6.6	203
2	Dissolution Mechanism of Platinum in Sulfuric Acid Solution. Journal of the Electrochemical Society, 2012, 159, F779-F786.	2.9	124
3	Degradation mechanism of galvanized steel in wet–dry cyclic environment containing chloride ions. Corrosion Science, 2004, 46, 361-376.	6.6	102
4	Effect of halogen ions on platinum dissolution under potential cycling in 0.5M H2SO4 solution. Electrochimica Acta, 2007, 52, 7444-7452.	5.2	87
5	Oxygen reduction mechanism on corroded zinc. Journal of Electroanalytical Chemistry, 2005, 585, 142-149.	3 . 8	83
6	Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments. Corrosion Science, 2007, 49, 3716-3731.	6.6	81
7	EQCM Study on Dissolution of Ruthenium in Sulfuric Acid. Journal of the Electrochemical Society, 2008, 155, B897.	2.9	48
8	Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte. Electrochimica Acta, 2007, 52, 3121-3129.	5. 2	45
9	Channel-Flow Double-Electrode Study on the Dissolution and Deposition Potentials of Platinum under Potential Cycles. Journal of the Electrochemical Society, 2009, 156, C253.	2.9	40
10	Combinatorial electrochemistry on Al–Fe alloys. Science and Technology of Advanced Materials, 2008, 9, 035009.	6.1	39
11	Effect of Al on the galvanic ability of Zn–Al coating under thin layer of electrolyte. Electrochimica Acta, 2007, 52, 2411-2422.	5 . 2	38
12	Electrochemical Quartz Crystal Microbalance Study on Dissolution of Platinum in Acid Solutions. Electrochemistry, 2007, 75, 359-365.	1.4	37
13	Dissolution and surface area loss of platinum nanoparticles under potential cycling. Journal of Electroanalytical Chemistry, 2011, 662, 379-383.	3.8	34
14	Investigation of atmospheric corrosion of Zn using ac impedance and differential pressure meter. Electrochimica Acta, 2004, 49, 2725-2729.	5. 2	33
15	Application of channel flow double electrode to the study on platinum dissolution during potential cycling in sulfuric acid solution. Electrochimica Acta, 2011, 56, 9714-9720.	5. 2	27
16	Effects of pH on Dissolution and Surface Area Loss of Platinum Due to Potential Cycling. Journal of the Electrochemical Society, 2012, 159, C190-C194.	2.9	26
17	Hydrogen entry behaviour of newly developed Al–Mg–Si coating produced by physical vapour deposition. Corrosion Science, 2011, 53, 3043-3047.	6.6	25
18	Berberine isolated from Mahonia nepalensis as an eco-friendly and thermally stable corrosion inhibitor for mild steel in acid medium. Arabian Journal of Chemistry, 2021, 14, 103423.	4.9	19

#	Article	IF	Citations
19	Bark Extract of Lantana camara in 1M HCl as Green Corrosion Inhibitor for Mild Steel. Engineering Journal, 2019, 23, 205-211.	1.0	17
20	Mitigation of sulphate-reducing bacteria attack on the corrosion of 20SiMn steel rebar in sulphoaluminate concrete using organic silicon quaternary ammonium salt. Construction and Building Materials, 2020, 257, 119047.	7.2	16
21	Enhancement of Ethanol Production in Electrochemical Cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalus (CDBT7). Frontiers in Energy Research, 2019, 7, .	2.3	15
22	Effect of glycine addition on the in-vitro corrosion behavior of AZ31 magnesium alloy in Hank's solution. Journal of Materials Science and Technology, 2021, 81, 97-107.	10.7	15
23	Alkaloid of Rhynchostylis retusa as Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem, 2022, 3, 211-224.	3.3	14
24	Evaluation of impedance spectra of zinc and galvanised steel corroding under atmospheric environments. Corrosion Engineering Science and Technology, 2008, 43, 23-29.	1.4	12
25	Study on the Temperature Dependence of Pitting Behaviour of AISI 4135 Steel in Marine Splash Zone. Electrochemistry, 2015, 83, 541-548.	1.4	12
26	The effect of electrolytes on the coating of polyaniline on mild steel by electrochemical methods and its corrosion behavior. Progress in Organic Coatings, 2021, 152, 106127.	3.9	12
27	Hydrogen entry behaviour of hot-dip Al–Mg–Si coated steel. Corrosion Science, 2011, 53, 3866-3871.	6.6	11
28	Ce-Doped PANI/Fe3O4 Nanocomposites: Electrode Materials for Supercapattery. Frontiers in Chemical Engineering, 2021, 3, .	2.7	11
29	An alternative pH sensor: graphene oxide-based electrochemical sensor. Emergent Materials, 2022, 5, 509-517.	5.7	11
30	Thermodynamic, Adsorption and Corrosion Inhibition Studies of Mild Steel by Artemisia vulgaris Extract from Methanol as Green Corrosion Inhibitor in Acid Medium. Journal of Nepal Chemical Society, 0, 39, 76-85.	0.8	10
31	Corrosion Inhibition of Bark Extract of Euphorbia royleana on Mild Steel in 1M HCl. Journal of Nepal Chemical Society, 0, 40, 25-29.	0.8	9
32	Effects of Potential Range and Sweep Rate on Dissolution of Platinum under Potential Cycling in 0.5 M H2SO4 Solution. ECS Transactions, 2009, 16, 117-123.	0.5	8
33	Electrochemical Stability and Oxidation Mechanism of Carbon Support for PEM Fuel Cell. ECS Transactions, 2008, 16, 2093-2099.	0.5	8
34	Characterization of home-made silver sulphide based iodide selective electrode. Talanta, 2010, 82, 1448-1454.	5.5	8
35	Preparation of an Amperometric Glucose Biosensor on Polyaniline-Coated Graphite. Journal of Sensors, 2021, 2021, 1-7.	1.1	8
36	Effect of Corrosion Product on the Electrochemical Behavior of Zn, Zn-Al and Al-Mg-Si Alloy Coated Steel. Electrochemistry, 2012, 80, 218-221.	1.4	5

#	Article	IF	CITATIONS
37	Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment. Journal of Materials Science and Technology, 2021, 66, 46-56.	10.7	5
38	Trace level monitoring of Cu(II) ion using CuS particles based membrane electrochemical sensor. Heliyon, 2021, 7, e07167.	3.2	5
39	Corrosion Behavior of 55mass%Al-1.6mass%Si-Zn Alloy in Wet-Dry Cyclic Environment. ISIJ International, 2004, 44, 1727-1732.	1.4	5
40	Study of Jatropha Curcas Extract as a Corrosion Inhibitor in Acidic Medium on Mild Steel by Weight Loss and Potentiodynamic Methods. Journal of Nepal Chemical Society, 2020, 41, 87-93.	0.8	4
41	Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine. Nanomaterials, 2021, 11, 2857.	4.1	3
42	Effects of NH 4 + , Na + , and Mg 2+ ions on the corrosion behavior of galvanized steel in wet–dry cyclic conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1388-1395.	1.5	2
43	Proton and Electron Conducting Polymer Composite Films Based on SBS Triblock Copolymer. Macromolecular Symposia, 2012, 320, 15-23.	0.7	1
44	Corrosion Inhibition of Mild Steel in Acidic Medium Using High Altitude Plant Extract. Journal of Nepal Chemical Society, 2018, 38, 48-57.	0.8	1
45	Fabrication and Characterization of Phthalic Acid Sensor for Detection of Lead (II) Ion. Journal of Nepal Chemical Society, 0, 37, 90-94.	0.8	1
46	Dissolution Behavior of Pt Alloy Catalysts in Sulfuric Acid Solution. ECS Transactions, 2009, 16, 71-76.	0.5	0
47	Dataset for the selection of electrolytes for Electropolymerization of aniline. Data in Brief, 2021, 35, 106875.	1.0	О